Метод минимального риска. Инвестор может воспользоваться одним из методов минимизации рисков Правило минимального риска автор

💖 Нравится? Поделись с друзьями ссылкой

Уклонение от риска . Полностью устранить возможность убытков чрезвычайно трудно, поэтому на практике это означает не брать на себя риск выше привычного уровня.

Предотвращение убытков . Инвестор может попытаться уменьшить, но не полностью устранить конкретные убытки. Предупреждение потерь означает возможность уберечься от случайностей при помощи конкретного набора превентивных действий. Под превентивными мерами понимают меры, направленные на предупреждение непредвиденных событий с целью снижения вероятности и величины убытков. Обычно для предотвращения убытков применяются такие меры, как постоянный контроль и анализ информации на рынке ценных бумаг; сохранность капитала, вложенного в ценные бумаги, и пр. Каждый инвестор заинтересован в предупредительной деятельности, однако ее осуществление не всегда возможно по техническим и экономическим причинам и нередко связано со значительными затратами.

К превентивным мероприятиям можно, на наш взгляд, отнести ре- портинг. Репортинг представляет собой систематическое документи-рование всей информации, связанной с анализом и оценкой внешних и внутренних рисков, с фиксированием остаточного риска после принятия всех мер по управлению рисками и пр. Вся эта информация должна быть занесена в определенные базы данных и бланки отчетности, которые легко в дальнейшем использовать инвесторам.

Минимизация потерь . Инвестор может попытаться предотвратить значительную часть своих убытков. Методами минимизации потерь являются диверсификация и лимитирование.

Диверсификация - это метод, направленный на снижение риска, при котором инвестор вкладывает свои средства в разные сферы (различные виды ценных бумаг, предприятия различных отраслей экономики), чтобы в случае потери в одной из них компенсировать это за счет другой сферы.
Диверсификация портфеля ценных бумаг предполагает включение в состав портфеля разнообразных ценных бумаг с различными харак-теристиками (уровнями риска, доходности, ликвидности и др.). Возможные невысокие доходы (или убытки) по одним ценным бумагам будут компенсироваться высокими доходами по другим ценным бумагам. Подбор диверсифицированного портфеля требует определенных усилий, связанных прежде всего с поиском полной и достоверной информации об инвестиционных качествах ценных бумаг. Чтобы обеспечить устойчивость портфеля, инвестор ограничивает размер вложений в ценные бумаги одного эмитента, добиваясь таким образом снижения степени риска. При вложении средств в акции предприятий различных отраслей народного хозяйства осуществляется отраслевая диверсификация.

Диверсификация - один из немногих методов управления рисками, который может использовать любой инвестор. Однако заметим, что ди-версификация позволяет уменьшить только несистематический риск. А на риск вложения капитала оказывают влияние процессы, происходящие в экономике в целом, такие, как движение ставки банковского процента, ожидание подъема или спада и прочее, и риск, связанный с ними, нельзя уменьшить с помощью диверсификации. Поэтому инвестору необходимо использовать другие способы снижения риска.

Лимитирование - это установление предельных сумм (лимита) вложения капитала в определенные виды ценных бумаг и т. п. Установление размера лимитов представляет собой многошаговую процедуру, включающую установление перечня лимитов, размера каждого из них, их предварительный анализ. Соблюдение установленных лимитов обеспечивает экономические условия для сохранения капитала, получения устойчивого дохода и защиты интересов инвесторов.

Поиск информации - это метод, направленный на снижение риска путем нахождения и использования необходимой информации для принятия инвестором рискового решения.

Принятие ошибочных решений в большинстве случаев связано с отсутствием или недостатком информации. Асимметричность информации, когда отдельные участники рынка имеют доступ к важной информации, которой не имеют остальные заинтересованные лица, мешает инвесторам вести себя рациональным образом и является барьером на пути эффективного использования ресурсов и средств.

Получение необходимой информации, повышение уровня информационного обеспечения инвестора может в значительной мере улучшить прогноз и снизить риск. Чтобы определить количество необходимой информации и целесообразность ее покупки, следует сравнить ожидаемые от нее предельные выгоды с ожидаемыми предельными издержками, связанными с ее получением. Если ожидаемая выгода от покупки информации превышает ожидаемые предельные издержки, то такую информацию необходимо приобрести. Если же наоборот, то от покупки такой дорогой информации лучше отказаться.

В настоящее время существует сфера бизнеса, называемая экаутингом, связанная со сбором, обработкой, классификацией, анализом и оформлением различных видов финансовой информации. Инвесторы могут воспользоваться услугами профессионалов в этой сфере бизнеса.

Методы минимизации убытков нередко называют методами контроля за риском. Применение всех этих методов предотвращения и сокращения потерь связано с определенными затратами, которые не должны превышать возможных размеров ущерба. Как правило, увеличение затрат по предотвращению риска ведет к снижению его опасности и ущербов, им вызываемых, но лишь до определенного предела. Этот предел наступает тогда, когда сумма годовых затрат по предотвращению риска и снижению его размеров становится равной предполагаемой сумме годового ущерба от реализации риска.

Методы возмещения (с наименьшими затратами) убытков применяются тогда, когда инвестор несет убытки, несмотря на усилия по минимизации своих убытков.

Передача риска . Чаще всего передача риска происходит путем хед-жирования и страхования.

Хеджирование - это система заключения срочных контрактов и сделок, учитывающая вероятные в будущем изменения цен, курсов и преследующая цель избежать неблагоприятных последствий этих изменений. Сущность хеджирования состоит в покупке (продаже) срочных контрактов одновременно с продажей (покупкой) реального товара с тем же сроком поставки и проведения обратной операции с наступлением срока фактической продажи товара. В результате происходит сглаживание резких колебаний цен. В рыночной экономике хеджирование является распространенным способом снижения риска.

По технике осуществления операций различают два вида хеджирования:

Хеджирование на повышение (хеджирование покупкой или длинный хедж) представляет собой биржевую операцию по покупке срочных контрактов (форвардных, опционов и фьючерсных). Хеджирование на повышение применяется в тех случаях, когда необходимо застраховаться от возможного повышения курсов (цен) в будущем. Оно позволяет установить покупную цену намного раньше, чем будет приобретен реальный актив.

Хеджирование на понижение (хеджирование продажей или короткий хедж) представляет собой биржевую операцию по продаже срочных контрактов. Хеджирование на понижение применяется в тех случаях, когда необходимо застраховаться от возможного снижения курсов (цен) в будущем.

Хеджирование может быть осуществлено с помощью операций с фьючерсными контрактами и с опционами.

Хеджирование фьючерсными контрактами подразумевает использование стандартных (по срокам, объемам и условиям поставки) контрактов на куплю-продажу ценных бумаг в будущем, обращающихся исключительно на биржах.

Положительными сторонами хеджирования с помощью фьючерсных контрактов являются:

  • доступность организованного рынка;
  • возможность проводить хеджирование без принятия значительных кредитных рисков. Кредитный риск снижается за счет эффективных механизмов взаимозачета требований, предлагаемых биржей;
  • простота регулирования величины хеджирующей позиции или ее закрытия;
  • наличие статистики по ценам и объемам торгов на доступные инструменты, что позволяет выбрать оптимальную стратегию хеджирования.

Отрицательными сторонами хеджирования с помощью фьючерсных контрактов являются:

  • отсутствие возможности использовать срочные контракты произвольного размера и срока исполнения. Фьючерсные контракты - это стандартные контракты, их множество ограничено, в силу этого базисный риск хеджирования заведомо невозможно сделать меньше некоторой заданной величины;
  • необходимость осуществления комиссионных расходов при заключении сделок;
  • необходимость отвлечения средств и принятия риска ликвидности при осуществлении хеджирования. Продажа и покупка стандартных контрактов требуют внесения депозитной маржи и ее последующего увеличения в случае неблагоприятного изменения цен.

Хеджирование помогает снизить риск от неблагоприятного изменения цены или курсов, но не дает возможности воспользоваться благоприятным изменением цены. При операции хеджирования риск не исчезает, он меняет своего носителя: инвестор перекладывает риск на биржевого спекулянта.

Страхование - это метод, направленный на снижение риска путем превращения случайных убытков в относительно небольшие постоянные издержки. Покупая страховку (заключая договор страхования), инвестор передают риск страховой компании, которая возмещает разного рода потери, ущербы, вызванные неблагоприятными событиями путем выплаты страхового возмещения и страховых сумм. За эти услуги она получает от инвестора гонорар (страховую премию).

Режим страхования рисков в страховой компании устанавливается с учетом страховой премии, дополнительных услуг, предоставляемых страховой компанией, и финансового положения страхователя. Инвестор должен определить приемлемое для него соотношение между страховой премией и страховой суммой с учетом дополнительных услуг, предоставляемых страховой компанией.

Если инвестор внимательно и четко оценивает баланс риска, то он тем самым создает предпосылки для избежания ненужного риска. Каждая возможность должна быть использована для повышения предсказуемости вероятных убытков с тем, чтобы инвестор мог иметь данные, необходимые для исследования всех вариантов своих выплат. И тогда он будет обращаться к страховой компании только в случаях катастрофического риска, т. е. очень высокого по степени вероятности и по возможным последствиям.

Передача контроля за риском . Инвестор может доверить контроль за риском другому лицу или группе лиц путем передачи:

  • реальной собственности или направлений деятельности, связанной с риском;
  • ответственности за риск.

Инвестор может продать какие-либо цепные бумаги, чтобы избежать инвестиционного риска, может передать свое имущество (ценные бумаги, денежные средства и др.) в доверительное управление профессионалам (трастовым компаниям, инвестиционным компаниям, финансовым брокерам, банкам и др.), тем самым передав все риски, связанные с этим имуществом и деятельностью по управлению им. Инвестор может передать риск, передав определенное направление деятельности, например передать функции по нахождению оптимального страхового покрытия и портфеля страховщиков страховому брокеру, который будет этим заниматься.

Распределение риска - это метод, при котором риск вероятного ущерба или потерь делится между участниками так, что возможные потери каждого невелики. Этот метод лежит в основе рискового финансирования. На этом методе основывается существование различных коллективных фондов, коллективных инвесторов.

Основным принципом рискового финансирования является разделение и распределение риска за счет:

  1. предварительной аккумуляции финансовых средств в общих фондах, не связанных с конкретным инвестиционным проектом;
  2. организации фонда в форме партнерства;
  3. управления несколькими фондами-партнерствами, находящимися на разных стадиях развития.

Фонды рискового (венчурного) финансирования связаны как с управлением отдельными предприятиями, так и с организацией самостоятельных рисковых фирм-инвесторов. Основной целью таких фондов является поддержка стартовых наукоемких компаний (венчуров), которые в случае неудачи всего проекта возьмут на себя часть финансовых потерь. Венчурный капитал используется для финансирования новейших научно-технических разработок, их внедрения, выпуска новых видов продукции, оказания услуг и формируется из взносов отдельных вкладчиков, крупных корпораций, правительственных ведомств, страховых компаний, банков.

На практике риски не поделены строго по отдельным категориям, и нелегко дать точные рекомендации по управлению рисками, тем не менее предлагаем использовать следующую схему управления рисками.

Схема управления рисками:

Каждый из перечисленных методов разрешения риска имеет свои достоинства и недостатки. Конкретный метод выбирается в зависимости от вида риска. Инвестор (или специалист, занимающийся проблемами риска) выбирает для снижения риска методы, больше других способные влиять на величину доходов или стоимости его капитала. Инвестор должен решить, выгоднее ли прибегнуть к традиционной диверсификации или использовать какой-либо иной метод управления рисками, чтобы наиболее надежно обеспечить покрытие возможных убытков и в наименьшей степени ущемить свои финансовые интересы. Сочетание сразу нескольких методов в конечном итоге может оказаться наилучшим решением.

С точки зрения минимизации расходов любой метод снижения риска должен быть задействован, если он требует наименьших затрат. Расходы по предотвращению риска и минимизации потерь не должны превышать возможных размеров ущерба. Каждый метод должен использоваться до тех пор, пока затраты на его применение не начнут превышать отдачу.

Снижение уровня риска вызывает необходимость технических, организационных мероприятий, требующих определенных, а во многих случаях и значительных затрат. А это не всегда целесообразно. Таким образом, экономические соображения устанавливают некоторые пределы снижения степени риска для конкретного инвестора. При решении вопросов о снижении риска необходимо сопоставить ряд показателей, относящихся к расходам, обеспечивающим приемлемый уровень риска и ожидаемый эффект.

Обобщив вышеперечисленные методы управления портфельными рисками, можно выделить две формы управления портфелями ценных бумаг:

  • пассивную;
  • активную.

Пассивная форма управления состоит в создании хорошо диверсифицированного портфеля с заранее определенным уровнем риска и продолжительным сохранением портфеля в неизменном состоянии.

Пассивная форма управления портфелями ценных бумаг осуществляется с помощью следующих основных методов:

  • диверсификация;
  • индексный метод (метод зеркального отражения);
  • сохранение портфеля.

Как уже отмечалось, диверсификация предполагает включение в состав портфеля разнообразных ценных бумаг с различными характеристиками. Подбор диверсифицированного портфеля требует определенных усилий, связанных прежде всего с поиском полной и достоверной информации об инвестиционных качествах ценных бумаг. Структура диверсифицированного портфеля ценных бумаг должна соответствовать определенным целям инвесторов. При вложении средств в акции промышленных компаний осуществляется отраслевая диверсификация.

Индексный метод , или метод зеркального отражения, построен на том, что в качестве эталона берется определенный портфель ценных бумаг. Структура портфеля-эталона характеризуется определенными индексами. Далее этот портфель зеркально повторяется. Использование данного метода осложняется трудностью подбора эталонного портфеля.

Сохранение портфеля основано на поддержании структуры и сохранении уровня общих характеристик портфеля. Не всегда удается сохранить неизменной структуру портфеля, так как с учетом нестабильной ситуации на российском фондовом рынке приходится покупать другие ценные бумаги. При крупных операциях с ценными бумагами может произойти изменение их курса, которое повлечет за собой изменение текущей стоимости активов. Возможна ситуация, когда сумма продажи ценных бумаг акционерных компаний превышает стоимость их покупки. В этом случае управляющий должен продать часть портфеля ценных бумаг, чтобы произвести выплаты клиентам, возвращающим компании свои акции. Крупные объемы продаж могут оказать понижающее воздействие на курсы ценных бумаг компании, что негативно сказывается на ее финансовом положении.

Сущность активной формы управления состоит в постоянной работе с портфелем ценных бумаг. Базовыми характеристиками активного управления являются:

  • выбор определенных ценных бумаг;
  • определение сроков покупки или продажи ценных бумаг;
  • постоянный свопинг (ротация) ценных бумаг в портфеле;
  • обеспечение чистого дохода.

Если прогнозируется снижение процентной ставки ЦБ РФ, то рекомендуется покупать долгосрочные облигации с низким доходом но купонам, курс которых быстро повышается при падении процентной ставки. При этом следует продать краткосрочные облигации с высокой доходностью по купонам, так как их курс в данной ситуации будет падать. Если динамика процентной ставки обнаруживает неопределенность, то управляющий превратит значительную часть портфеля ценных бумаг в активы повышенной ликвидности (например в срочные счета).

При выборе стратегии инвестирования факторами, определяющими отраслевую структуру инвестиционного портфеля, остаются риск и доходность инвестиций. При выборе ценных бумаг факторами, определяющими доходность инвестиций, являются рентабельность производства и перспективы роста объема продаж.

Метод минимального риска. Этот метод был развит в связи с задачами радиолокации, но может вполне успешно использоваться в задачах технической диагностики.

Пусть проводится измерение параметра х (например, уровня вибраций изделия) и на основании данных измерений требуется сделать вывод о возможности продолжения эксплуатации (диагноз - исправное состояние) или о направлении изделия в ремонт (диагноз - неисправное состояние).

На рис. 1 даны значения плотности вероятности диагностического параметра х для двух состояний.

Пусть установлена контрольная норма для уровня вибраций .

В соответствии с этой нормой принимают:

Знак означает, что объект с уровнем вибраций х относят к данному состоянию.

Из рис. 1 следует, что любой выбор величины связан с определенным риском, так как кривые пересекаются.

Существуют два вида риска: риск «ложной тревоги», когда исправное изделие признают неисправным, и риск «пропуска цели», когда неисправное изделие считают годным.

В теории статистического контроля их называют риском поставщика и риском приемщика или ошибками первого и второго рода.

При данном вероятность ложной тревоги

и вероитность пропуска цели

Задача теории статистических решений состоит в выборе оптимального значения

По способу минимального риска рассматривается общая стоимость риска

где - «цена» ложной тревоги; - «цена» пропуска цели; - априорные вероятности диагнозов (состояний), определяемые по предварительным

Рис. 1. Плотность вероятности диагностического признака

статистическим данным. Величина представляет собой «среднее значение» потери при ошибочном решении.

Из необходимого условия минимума

получаем

Можно показать, что для одномодальных распределений условие (23) всегда обеспечивает минимум величины Если стоимость ошибочных решений одинакова, то

Последнее соотношение минимизирует общее число ошибочных решений. Оно вытекает также из метода Байеса.

Метод Неймана-Пирсона. В этом методе исходят из условия минимума вероятности пропуска дефекта при допустимом уровне вероятности ложной тревоги.

Таким образом, вероятность ложной тревоги

где - допустимый уровень ложной тревоги.

В рассматриваемых однопараметрических задачах минимум вероятности пропуска цели достигается при

Последнее условие и определяет граничное значение параметра (значение

При назначении величины а учитывают следующее:

1) число снимаемых с эксплуатации изделий должно превышать ожидаемое число дефектных изделий в силу неизбежных погрешностей метода оценки состояния;

2) принимаемое значение ложной тревоги не должно, без крайней необходимости, нарушать нормальную эксплуатацию или приводить к большим экономическим потерям.


ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЭЛЕКТРОННЫХ СРЕДСТВ

УДК 678.029.983

Составитель: В.А. Пиккиев.

Рецензент

Кандидат технических наук, доцент О.Г. Бондарь

Техническая диагностика электронных средств : методические рекомендации для проведения практических занятий по дисциплине «Техническая диагностика электронных средств»/ Юго-Зап. гос. ун-т.; сост.: В.А. Пиккиев, Курск, 2016. 8с.: ил.4, табл.2, прилож.1. Библиогр.:с. 9 .

Методические указания для проведения практических занятий предназначены для студентов направления подготовки 11.03.03 «Конструирование и технология электронных средств».

Подписано в печать. Формат 60х84 1\16 .

Усл. печ. л. Уч.-изд.л. Тираж 30 экз. Заказ. Бесплатно

Юго-Западный государственный университет.

ВВЕДЕНИЕ. ЦЕЛЬ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ.
1. Практическое занятие № 1. Метод минимального числа ошибочных решений
2. Практическое занятие № 2. Метод минимального риска
3. Практическое занятие № 3. Метод Байеса
4. Практическое занятие № 4. Метод наибольшего правдоподобия
5. Практическое занятие № 5. Метод минимакса
6. Практическое занятие № 6. Метод Неймана–Пирсона
7. Практическое занятие № 7. Линейные разделяющие функции
8. Практическое занятие № 8. Обобщенный алгоритм нахождения разделяющей гиперплоскости


ВВЕДЕНИЕ. ЦЕЛЬ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ .

Техническая диагностика рассматривает задачи диагностирования, принципы организации систем тестового и функционального диагноза, методы и процедуры алгоритмов диагноза для проверки неисправности, работоспособности и правильности функционирования, а также для поиска неисправностей различных технических объектов. Основное внимание уделяется логическим аспектам технической диагностики при детерминированных математических моделях диагноза.

Цель дисциплины состоит в освоении методов и алгоритмов технической диагностики.

Задачей курса является подготовка технических специалистов освоивших:

Современные методы и алгоритмы технической диагностики;

Модели объектов диагностирования и неисправностей;

Алгоритмы диагностирования и тесты;

Моделирование объектов;

Аппаратуру систем поэлементного диагностирования;

Сигнатурный анализ;

Системы автоматизации диагностирования РЭА и ЭВС;

Навыки разработки и построения моделей элементов.

Предусмотреные в учебном плане практические занятия, позволяют формировать у студентов профессиональные компетенции аналитического и творческого мышления путем приобретения практических навыков диагностики электронных средств.

Практические занятия предусматривают работу с прикладными задачами разработки алгоритмов поиска неисправностей электронных устройств и построению контролирующих тестов с целью их дальнейшего использования при моделировании функционирования этих устройств.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1

МЕТОД МИНИМАЛЬНОГО ЧИСЛА ОШИБОЧНЫХ РЕШЕНИЙ.

В задачах надежности рассматриваемый метод часто дает «неосторожные решения», так как последствия ошибочных решений существенно различаются между собой. Обычно цена пропуска дефекта существенно выше цены ложной тревоги. Если указанные стоимости приблизительно одинаковы (для дефектов с ограниченными последствиями, для некоторых задач контроля и др.), то применение метода вполне оправдано.

Вероятность ошибочного решения определяется так

D 1 - диагноз исправного состояния;

D 2 - диагноз дефектного состояния;

P 1 -вероятность 1 диагноза;

P 2 - вероятность 2-го диагноза;

x 0 - граничное значение диагностического параметра.

Из условия экстремума этой вероятности получаем

Условие минимума дает

Для одномодальных (т. е. содержат не более одной точки максимума) распределений неравенство (4) выполняется, и минимум вероятности ошибочного решения получается из соотношения (2)

Условие выбора граничного значения (5) называется условием Зигерта–Котельникова (условием идеального наблюдателя). К этому условию приводит также метод Байеса.

Решение x ∈ D1 принимается при

что совпадает с равенством (6).

Рассеяние параметра (величина среднеквадратичного отклонения) принимается одинаковым.

В рассматриваемом случае плотности распределений будут равны:

Таким образом, полученные математические модели(8-9) могут быть использованы для диагностики ЭС.

Пример

Диагностика работоспособности жестких дисков осуществляется по количеству битых секторов (Reallocated sectors). Фирма Western Digital при производстве ЖД модели “My Passport” использует следующие допуски: Исправными считаются диски у которых среднее значение составляет х 1 = 5 на единицу объема и среднеквадратичное отклонение σ 1 = 2 . При наличии дефекта магнитного напыления (неисправное состояние) эти значения равны х 2 = 12, σ 2 = 3 . Распределения предполагаются нормальными.

Требуется определить предельное количество неисправных секторов, выше которого жесткий диск подлежит снятию с эксплуатации и разборке (во избежание опасных последствий). По статистическим данным, неисп­равное состояние магнитного напыления наблюдается у 10% ЖД.

Плотности распределения:

1. Плотность распределения для исправного состояния:

2. Плотность распределения для дефектного состояния:

3. Разделим плотности состояния и приравняем к вероятностям состояний:

4. Прологарифмируем данное равенство и найдем предельное количество неисправных секторов:

Это уравнение имеет положительный корень x 0 =9,79

Критическое количество битых секторов равно 9 на единицу объема.

Варианты задания

№ п/п х 1 σ 1 х 2 σ 2

Вывод : Использование данного метода позволяет принимать решение без оценки последствий ошибок, из условий задачи.

Недостатком является то, что указанные стоимости приблизительно одинаковы.

Применение данного метода, распространено в приборостроение и машиностроении.

Практическое занятие № 2

МЕТОД МИНИМАЛЬНОГО РИСКА

Цель работы: изучение метода минимального риска для диагностики технического состояния ЭС.

Задачи работы :

Изучить теоретические основы метода минимального риска;

Провести практические расчеты;

Сделать выводы по использованию метода минимального риска ЭС.

Теоретические пояснения .

Вероятность принятия ошибочного решения слагается из вероятностей ложной тревоги и пропуска дефекта. Если приписать «цены» этим ошибкам, то получим выражение для среднего риск.

Где D1- диагноз исправного состояния; D2- диагноз дефектного состояния; P1-вероятность 1 диагноза; P2- вероятность 2-го диагноза; x0- граничное значение диагностического параметра; С12- стоимость ложной тревоги.

Разумеется, цена ошибки имеет условное значение, но она должна учесть предполагаемые последствия ложной тревоги и пропуска дефекта. В задачах надежности стоимость пропуска дефекта обычно существенно больше стоимости ложной тревоги (C12 >> C21). Иногда вводится цена правильных решений С11 и С22, которая для сравнения со стоимостью потерь (ошибок) принимается отрицательной. В общем случае средний риск (ожидаемая величина потери) выражается равенством

Где С11, С22 - цена правильных решений.

Величина x, предъявляемая для распознавания, является случайной и потому равенства (1) и (2) представляют собой среднее значение (математическое ожидание) риска.

Найдем граничное значение x0 из условия минимума среднего риска. Дифференцируя (2) по x0 и приравнивая производную нулю, получим сначала условие экстремума

Это условие часто определяет два значения x0, из которых одно соответствует минимуму, второе – максимуму риска (рис. 1). Соотношение (4) является необходимым, но недостаточным условием минимума. Для существования минимума R в точке x = x0 вторая производная должна быть положительной (4.1.), что приводит к следующему условию

(4.1.)

относительно производных плотностей распределений:

Если распределения f (x, D1) и f(x, D2) являются, как обычно, одномодальными (т. е. содержат не более одной точки максимума), то при

Условие (5) выполняется. Действительно, в правой части равенства стоит положительная величина, а при x>x1 производная f "(x/D1), тогда как при x

В дальнейшем под x0 будем понимать граничное значение диагностического параметра, обеспечивающее по правилу (5) минимум среднего риска. Будем также считать распределения f (x / D1) и f (x / D2) одномодальными («одногорбыми»).

Из условия (4) следует, что решение об отнесении объекта x к состоянию D1 или D2 можно связать с величиной отношения правдоподобия. Напомним, что отношение плотностей вероятностей распределения x при двух состояниях называется отношением правдоподобия.

По методу минимального риска принимается следующее решение о состоянии объекта, имеющего данное значение параметра x:

(8.1.)

Эти условия вытекают из соотношений (5) и (4). Условие (7) соответствует x< x0, условие (8) x > x0. Величина (8.1.) представляет собой пороговое значение для отношения правдоподобия. Напомним, что диагноз D1 соответствует исправному состоянию, D2 – дефектному состоянию объекта; C21 – цена ложной тревоги; C12 – цена пропуска цели (первый индекс – принятое состояние, второй – действительное); C11 < 0, C22 – цены правильных решений (условные выигрыши). В большинстве практических задач условные выигрыши (поощрения) для правильных решений не вводятся и тогда

Часто оказывается удобным рассматривать не отношение правдоподобия, а логарифм этого отношения. Это не изменяет результата, таккак логарифмическая функция возрастает монотонно вместе со своимаргументом. Расчет для нормального и некоторых других распределений при использовании логарифма отношения правдоподобия оказывается несколько проще. Рассмотрим случай, когда параметр x имеет нормальное распределение при исправном D1 и неисправном D2 состояниях. Рассеяние параметра (величина среднеквадратичного отклонения) принимается одинаковым. В рассматриваемом случае плотности распределений

Внося эти соотношения в равенство (4), получаем после логарифмирования

Диагностика работоспособности флэш накопителей осуществляется по количеству битых секторов (Reallocated sectors). Фирма Toshiba TransMemory при производстве модели “UD-01G-T-03” использует следующие допуски: Исправными считаются накопители у которых среднее значение составляет х1 = 5 на единицу объема. Среднеквадратичное отклонение примем равным ϭ1 = 2.

При наличии дефекта NAND памяти эти значения равны х2 = 12, ϭ2 = 3 . Распределения предполагаются нормальными. Требуется определить предельное количество неисправных секторов, выше которого жесткий диск подлежит снятию с эксплуатации. По статистическим данным, неисправное состояние наблюдается у 10% флэш накопителей.

Примем, что отношение стоимостей пропуска цели и ложной тревоги , и откажемся от «вознаграждения» правильных решений (С11=С22=0). Из условия (4) получаем

Варианты задания:

Вар. X 1 мм. X 2 мм. б1 б2

Вывод

Метод позволяет оценить вероятность принятия ошибочного решения определяется как минимизация точки экстремума среднего риска ошибочных решений при максимуме правдоподобия, т.е. проводится расчет минимального риска происхождения события при наличии информации о максимально подобных событиях.

ПРАКТИЧЕСКАЯ РАБОТА № 3

МЕТОД БАЙЕСА

Среди методов технической диагностики метод, основанный на обобщенной формуле Байеса, занимает особое место благодаря простоте и эффективности. Разумеется, метод Байеса имеет недостатки: большой объем предварительной информации, «угнетение» редко встречающихся диагнозов и др. Однако в случаях, когда объем статистических данных позволяет применить метод Байеса, его целесообразно использовать как один из наиболее надежных и эффективных.

Пусть имеется диагноз D i и простой признак k j , встречающийся при этом диагнозе, то вероятность совместного появления событий (наличие у объекта состояния D i и признака k j)

Из этого равенства вытекает формула Байеса

Очень важно определить точный смысл всех входящих в эту формулу величин:

P(D i) – вероятность диагноза D i , определяемая по статистическим данным (априорная вероятность диагноза). Так, если предварительно обследовано N объектов и у N i объектов имелось состояние D i , то

P (k j / D i )– вероятность появления признакаk j у объектов с состоянием D i . Если среди N i объектов, имеющих диагноз D i , у N ij , проявился признак k j , то

P (k j )– вероятность появления признакаk j во всех объектах независимо от состояния (диагноза) объекта. Пусть из общего числа N объектов признак k j был обнаружен у N j объектов, тогда

Для установления диагноза специальное вычисление P(k j) не требуется. Как будет ясно из дальнейшего, значения P(D i) и P(k j /D v), известные для всех возможных состояний, определяют величину P(k j).

В равенстве (2) P(D i / k j) – вероятность диагноза D i после того, как стало известно наличие у рассматриваемого объекта признака k j (апостериорная вероятность диагноза).

Обобщенная формула Байеса относится к случаю, когда обследование проводится по комплексу признаков K, включающему признаки k 1 , k 2 , …, k ν . Каждый из признаков k j имеет m j разрядов (k j1 , k j2 , …, k js , …, k jm). В результате обследования становится известной реализация признака

и всего комплекса признаков К * . Индекс * , как и раньше, означает конкретное значение (реализацию) признака. Формула Байеса для комплекса признаков имеет вид

где P(D i / K *) – вероятность диагноза D i после того, как стали известны результаты обследования по комплексу признаков K; P(D i) – предварительная вероятность диагноза D i (по предшествующей статистике).

Формула (7) относится к любому из n возможных состояний (диагнозов) системы. Предполагается, что система находится только в одном из указанных состояний и потому

В практических задачах нередко допускается возможность существования нескольких состояний A 1 , …, A r , причем некоторые из них могут встретиться в комбинации друг с другом. Тогда в качестве различных диагнозов D i следует рассматривать отдельные состояния D 1 = A 1 , …, D r = A r и их комбинации D r+1 = A 1 /\ A 2 .

Перейдем к определению P (K * / D i ) . Если комплекс признаков состоит из н признаков, то

где k * j = k js – разряд признака, выявившийся в результате обследования. Для диагностически независимых признаков;

В большинстве практических задач, особенно при большом числе признаков, можно принимать условие независимости признаков даже при наличии существенных корреляционных связей между ними.

Вероятность появления комплекса признаков K *

Обобщенная формула Байеса может быть записана

где P(K * / D i) определяется равенством (9) или (10). Из соотношения (12) вытекает

что, разумеется, и должно быть, так как один из диагнозов обязательно реализуется, а реализация одновременно двух диагнозов невозможна.

Следует обратить внимание на то, что знаменатель формулы Байеса для всех диагнозов одинаков. Это позволяет сначала определить вероятности совместного появления i-го диагноза и данной реализации комплекса признаков

и затем апостериорную вероятность диагноза

Для определения вероятности диагнозов по методу Байеса необходимо составить диагностическую матрицу (табл. 1), которая формируется на основе предварительного статистического материала. В этой таблице содержатся вероятности разрядов признаков при различных диагнозах.

Таблица 1

Если признаки двухразрядные (простые признаки «да – нет»), то в таблице достаточно указать вероятность появления признака P(k j / D i).

Вероятность отсутствия признака P (k j / D i ) = 1 − P (k j / D i ) .

Однако более удобно использовать единообразную форму, полагая, например, для двухразрядного признака P (kj /D ) = P (kj 1/D ) ; P (k j /D ) = P (kj 2/D ).

Отметим, что ∑P (k js / D i ) =1 , где m j – число разрядов признака k j .

Сумма вероятностей всех возможных реализаций признака равна единице.

В диагностическую матрицу включены априорные вероятности диагнозов. Процесс обучения в методе Байеса состоит в формировании диагностической матрицы. Важно предусмотреть возможность уточнения таблицы в процессе диагностики. Для этого в памяти ЭВМ следует хранить не только значения P(k js / D i), но и следующие величины: N – общее число объектов, использованных для составления диагностической матрицы; N i - число объектов с диагнозом D i ; N ij – число объектов с диагнозом D i , обследованных по признаку k j . Если поступает новый объект с диагнозом D μ , то проводится корректировка прежних априорных вероятностей диагнозов следующим образом:

Далее вводятся поправки к вероятностям признаков. Пусть у нового объекта с диагнозом D μ выявлен разряд r признака k j . Тогда для дальнейшей диагностики принимаются новые значения вероятности интервалов признака k j при диагнозе D μ:

Условные вероятности признаков при других диагнозах корректировки не требуют.

Практическая часть

1.Изучить методические указания и получить задание.

ПРАКТИЧЕСКАЯ РАБОТА № 4

Метод минимального риска используется для определения граничного значения определяющего параметра для принятия решения о состоянии объекта, исходя из условия минимума средних затрат.

Пусть состояние некоторого объекта определяется значением некоторого параметра х. необходимо выбрать такое значение этого параметра х 0 , чтобы:

Исправное состояние характеризуется плотностью распределения параметра х, f (x / D 1) а неисправное – f(x / D 2) (рис 2.8). Кривые f (x / D 1) и f(x / D 2) пересекаются и поэтому невозможно выбрать х 0 так, чтобы правило (2.16) не давало бы ошибочных решений.

Возникающие при принятии решения ошибки подразделяют на ошибки первого и второго рода.

Ошибка первого рода – принятие решения о неисправности (наличии дефекта) объекта, когда в действительности объект находится в исправном состоянии.

Ошибка второго рода – принятие решения об исправном состоянии объекта, когда в действительности объект находится в неисправном состоянии (объект содержит дефект).

Вероятность ошибки первого рода равна произведению вероятности двух событий:

    вероятности того, что объект находится в исправном состоянии;

    вероятности того, что значение определяющего параметра х превысит граничное значение х 0 .

Выражение для определения вероятности ошибки первого рода имеет вид:

где p(D 1 ) – априорная вероятность нахождения объекта в исправном состоянии (считается известной на основании предварительных статистических данных).

Аналогично определяется вероятность ошибки второго рода:

Рис. 2.8. Плотности вероятностей состояний объекта диагностирования

Элементы систем сбора информации: унифицирующие измерительные преобразователи.

Для согласования первичного преобразователя с устройствами системы сбора информации его выходной сигнал должен быть унифицирован, т.е. отвечать некоторым требованиям по уровню, мощности, виду носителя информации и т.д., которые определяются соответствующими ГОСТ.

Для преобразования выходных сигналов первичных преобразователей в унифицированные применяется ряд нормирующих преобразователей. На вход нормирующих преобразователей могут подаваться естественные сигналы первичных преобразователей различных физических величин, а на выходе формируются соответствующие унифицированные сигналы.

Группа средств, обеспечивающих унификацию сигнала между его источником или выходом первичного преобразователя и входом вторичного устройства, относится к классу унифицирующих измерительных преобразователей (УИП).

Различают следующие типы УИП:

    индивидуальные;

    групповые;

    многоканальные.

Индивидуальные УИП (рис. 3.36а)) обслуживают один ПП и включаются между ПП и коммутатором или последующим измерительным преобразователем. Индивидуальные УИП размещаются вместе с ПП непосредственно на объекте исследования.

Они используются для унификации сигналов при сравнительно небольшом количестве измеряемых параметров и при ограниченном времени измерения, не позволяющем использовать групповые УИП.

Индивидуальные УИП позволяют производить:

    преобразование одного унифицированного сигнала в другой;

    гальваническую развязку входных цепей;

    размножение входного сигнала по нескольким выходам.

Однако применение в каждом измерительном комплексе ИИС своего УИП усложняет систему и снижает ее надежность и экономическую эффективность.

Групповые УИП (рис. 3.36б)) являются более эффективными с этой точки зрения они обслуживают определенную группу первичных преобразователей, выходные сигналы которых представляют собой однородные физические величины. Они располагаются в Ииспосле коммутатора и управляются совместно с последним блоком управления.

При построении многоканальных ИИС разнородных физических величин последние группируются по роду физической величины, а каждая группа подключается к соответствующему групповому УИП.

Многоканальные УИП. (рис. 3.36в)) Если измеряемые физические величины в основном разнородные, то в ИИС могут применяться многоканальные УИП, которые представляют собой объединенные в одном корпусе или одной плате несколько индивидуальных УИП. Преобразование информации осуществляется поn входам иn выходам. Основной конструктивной особенностью многоканального УИП является использование общих источника питания и системы контроля для всех индивидуальных УИП.

Рис. 3.36.основные типы унифицирующих

измерительных преобразователей

Основные функции, выполняемые УИП:

    линейные (масштабирование, установление нуля, температурная компенсация);

    нелинейные (лианеризация) преобразования сигналов.

При линейной характеристике первичного преобразователя УИП выполняет линейные операции, которые называются масштабированием . Суть масштабирования заключается в следующем. Пусть входной сигнал изменяется в пределах отy 1 доy 2 , а динамический диапазон выходного сигнала УИП должен лежать в пределах от0 доz . Тогда для совмещения начала динамических диапазонов УИП и первичного преобразователя к сигналу ПП должен быть добавлен сигнал, а затем суммарный сигнал должен быть усилен враз.

Возможен также вариант, при котором выходной сигнал ПП сначала усиливается, а потом совмещаются начала динамических диапазонов.

Первый вариант приведения выходного сигнала к унифицированному виду обычно используется в индивидуальных УИП, а второй в групповых.

Т.к. связь между выходным сигналом yПП и измеряемым параметром чаще всего нелинейная (например, у термопар, платиновых термопреобразователей сопротивления и т.д.) УИП должен выполнять операциюлинеаризации . Линеаризация заключается в спрямлении функции преобразования ПП. В этом случае линеаризующая функция должна иметь вид обратной функции преобразования ПП.

Для линеаризации функции преобразования в УИП используются специальные нелинейные звенья. Они могут включаться до линейного

унифицирующего преобразователя, после него или в цепь обратной связи усилителя, используемого для изменения масштаба измеряемой величины.

U вх

U ОС

U вых

R 1

R 2

R 3

R 4

R 5

D 1

D 2

D 3

Чаще всего линеаризация достигается кусочно–линейной аппроксимацией и выполняется с помощью цепочки последовательно соединенных резисторов, шунтированных стабилитронами или диодами Д 1 Д 3

Рис. 3.37.структурная схема УИП

С ростом напряжения на выходе усилителя увеличивается ток делителя и падение напряжения на каждом из резисторов R 1 R 5 .как только падение напряжения на каком-либо из резисторов достигает напряжения пробоя соответствующего стабилитрона, стабилитрон начинает шунтировать этот резистор. Сопротивления резисторов подбираются таким образом, чтобы получать требуемую зависимость напряжения обратной связиU ОС инвертирующего усилителяУ , снимаемого с резистораR 5 , от выходного напряжения усилителя.

Типовой аналоговый УИП содержит в своем составе:

    выходной усилитель;

    устройство гальванической развязки;

    функциональный преобразователь, линеаризующий сигнал ПП;

    выходной усилитель;

    стабилизированный источник питания.

Некоторые первичные преобразователи в качестве выходного имеют сигнал переменного тока такой сигнал модулируется либо по амплитуде (например, дифференциальные трансформаторные преобразователи), либо по частоте (например, пьезорезонаторы).

В качестве примера рассмотрим структурную схему УИП, предназначенного для преобразования переменного напряжения датчиков давления, перепада давления, расхода, уровня, паросодержания в унифицированный сигнал постоянного тока 0…5 мА (рис. 3.38.).

Рис. 3.38. Структурная схема УИП

Переменное напряжение с дифференциального трансформаторного первичного преобразователя демодулятором преобразуется в пропорциональное напряжение постоянного тока, которое усиливается магнитным МУ и электроннымУ усилителями постоянного тока, охваченными глубокой отрицательной обратной связью через устройство обратной связиОС , позволяющее при необходимости линеаризовать характеристику первичного преобразователя.

Унифицирующие измерительные преобразователи, работающие с частотными ПП, должны выполнять те же функции, что и УИП амплитудных ПП.

Пример 2.5. Для приведенной в примере 2.1 матрицы последствий выбрать наилучший вариант решения на основе критерия Гурвица при λ =1/2.

Решение. Рассматривая матрицу последствий Q по строкам, для каждого i вычисляем значения ci= 1/2minqij + 1/2maxqij. Например, с1=1/2*2+1/2*8=5; аналогично находятся с2=7; с3=6,5; с4= 4,5. Наибольшим является с2=7. Следовательно, критерий Гурвица при заданном λ =1/2 рекомендует выбрать второй вариант (i=2 ).

2.3. Анализ связанной группы решений в условиях частичной

неопределенности

Если при принятии решения ЛПР известны вероятности pj того, что реальная ситуация может развиваться по варианту j, то говорят, что ЛПР находится в условиях частичной неопределенности. В этом случае можно руководствоваться одним из следующих критериев (правил).

Критерий (правило) максимизации среднего ожидаемого дохода . Этот критерий называется также критерием максимума среднего выигрыша. Если известны вероятности pj вариантов развития реальной ситуации, то доход, получаемый при i-ом решении, является случайной величиной Qi с рядом распределения

Математическое ожидание M [Qi ] случайной величины Qi и есть средний ожидаемый доход, обозначаемый также :

= M [Qi ] = .

Для каждого i-го варианта решения рассчитываются величины , и в соответствии с рассматриваемым критерием выбирается вариант, для которого достигается

Пример 2.6. Пусть для исходных данных примера 2.1 известны вероятности развития реальной ситуации по каждому из четырех вариантов, образующих полную группу событий:


p1 =1/2, p2=1/6, p3=1/6, p4=1/6. Выяснить, при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Найдем для каждого i-го варианта решения средний ожидаемый доход: =1/2*5+1/6*2+1/6*8+1/6*4= 29/6, = 25/6, = 7, = 17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска (другое название –критерий минимума среднего проигрыша ).

В тех же условиях, что и в предыдущем случае, риск ЛПР при выборе i-го решения является случайной величиной Ri с рядом распределения

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также : = M = . . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск: .

Пример 2.7 . Исходные данные те же, что и в примере 2.6. Определить, при каком варианте решения достигается наименьший средний ожидаемый риск, и найти величину минимального среднего ожидаемого риска (проигрыша).

Решение. Для каждого i-го варианта решения найдем величину среднего ожидаемого риска. На основе заданной матрицы риска R найдем: = 1/2*3+1/6*3+1/6*0+1/6*8=20/6, = 4, = 7/6, = 32/6.

Следовательно, минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению: = 7/6.

Замечание . Когда говорят о среднем ожидаемом доходе (выигрыше) или о среднем ожидаемом риске (проигрыше), то подразумевают возможность многократного повторения процесса принятия решения по описанной схеме или фактическое неоднократное повторение такого процесса в прошлом. Условность данного предположения заключается в том, что реально требуемого количества таких повторений может и не быть.

Критерий (правило) Лаплпаса равновозможности (безразличия) . Этот критерий непосредственно не относится к случаю частичной неопределеннос-ти, и его применяют в условиях полной неопределенности. Однако здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны – отсюда и название критерия. Тогда описанные выше схемы расчета можно применить, считая вероятности pj одинаковыми для всех вариантов реальной ситуации и равными 1/n. Так, при использовании критерия максимизации среднего ожидаемого дохода выбирается решение, при котором достигается . А в соответсвии с критерием минимизации среднего ожидаемого риска выбирается вариант решения, для которого обеспечивается .

Пример 2.8. Используя критерий Лапласа равновозможности для исходных данных примера 2.1, выбрать наилучший вариант решения на основе: а) правила максимизации среднего ожидаемого дохода; б) правила минимизации среднего ожидаемого риска.

Решение. а) С учетом равновероятности вариантов реальной ситуации величины среднего ожидаемого дохода для каждого из вариантов решения составляют = (5+2+8+4)/4=19/4, = 21/4, = 26/4, = 15/4. Следовательно, наилучшим вариантом решения будет третий, и максимальный средний ожидаемый доход буде равен 26/4.

б) Для каждого варианта решения рассчитаем величины среднего ожидаемого риска на основе матрицы рисков с учетом равновероятности вариантов ситуации: = (3+3+0+8)/4 = 14/4, = 3, = 7/4, = 18/4. Отсюда следует, что наилучшим будет третий вариант, и при этом минимальный средний ожидаемый риск составит 7/4.

2.4. Оптимальность по Парето двухкритериальных финансовых

операций в условиях неопределенности

Из рассмотренного выше следует, что каждое ре­шение (финансовая операция) имеет две характеристики, которые нуждаются в оптимизации: средний ожидаемый доход и средний ожидаемый риск. Таким образом, выбор наилучшего решения является оптими­зационной двухкритериальной задачей. В задачах многокритериальной оптимизации основным понятием является понятие оптимальности по Парето . Рассмотрим это понятие для финансовых операций с двумя указанными характеристиками.

Пусть каждая операция а имеет две числовые характеристики Е(а), r (а) (например, эффективность и риск); при оптимизации Е стремятся увеличить, а r уменьшить.

Существует несколько способов постановки таких оптимизационных задач. Рассмотрим такую задачу в общем виде. Пусть А - не­которое множество операций, и разные операции обязательно различаются хо­тя бы одной характеристикой. При выборе наилучшей опе­рации желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b , и обозначать а > b, если Е(а) ≥ Е(b ) и r (a ) r(b ) и хотя бы одно из этих неравенств строгое. При этом операция а на­зывается доминирующей , а операция b – доминируемой . Очевидно, что никакая доминируемая операция не может быть признана наилучшей . Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество недоминируемых операций назы­вается множеством (областью) Парето или множеством оптимально­сти по Парето .

Для множества Парето справедливо утверждение: каждая из характе­ристик Е, r является однозначной функцией другой, т. е. на множестве Парето по од­ной характеристике операции можно однозначно определить другую.

Вернемся к анализу финансовых решений в условиях частичной неопределенности. Как показано в разделе 2.3, каждая операция характеризуется средним ожидаемым риском и средним ожидаемым доходом . Если ввести прямоугольную систему координат, на оси абсцисс которой откладывать значения , а на оси ординат – значения , то каждой операции будет соответствовать точка (, ) на координатной плоскости. Чем выше эта точка на плоскости, тем доходнее операция; чем правее точка, тем более рисковая операция. Следовательно, при поиске недоминируемых операций (множества Парето) нужно выбирать точки выше и левее. Таким образом, множество Парето для исходных данных примеров 2.6 и 2.7 состоит только из одной третьей операции.

Для определения лучшей операции в ряде случаев можно применять некоторую взвешивающую формулу, в которую характеристики и входят с определенными весами, и которая дает одно число, задающее лучшую операцию. Пусть, например, для операции i с характеристиками (, ) взвешивающая формула имеет вид f(i) = 3 - 2 , и наилучшая операция выбирается по максимуму величины f(i) . Эта взвешивающая формула означает, что ЛПР согласен на увеличение риска на три единицы, если доход операции увеличится при этом не менее, чем на две единицы. Таким образом, взвешивающая формула выражает отношение ЛПР к показателям дохода и риска.

Пример 2.9. Пусть исходные данные те же, что и в примерах 2.6 и 2.7, т. е. для матриц последствий и риска примера 2.1 известны вероятности вариантов развития реальной ситуации: p1 =1/2, p2=1/6, p3=1/6, p4=1/6. В этих условиях ЛПР согласен на увеличение риска на две единицы, если при этом доход операции увеличится не менее, чем на одну единицу. Определить для этого случая наилучшую операцию.


Решение. Взвешивающая формула имеет вид f(i) = 2 - . Используя результаты расчетов в примерах 2.6 и 2.7, находим:

f(1) = 2*29/6 – 20/6 = 6,33; f(2) = 2*25/6 – 4 = 4,33;

f(3) = 2*7 – 7/6 = 12,83; f(4) = 2*17/6 – 32/6 = 0,33

Следовательно, лучшей является третья операция, а худшей – четвертая.

Тема 3. Измерители и показатели финансовых рисков

Количественная оценка риска. Риск отдельной операции. Общие измерители риска.

В данной теме рассматриваются критерии и методы принятия решений в тех случаях, когда предполагается, что распределения вероятностей возможных исходов либо известны, либо они могут быть найдены, причем в последнем случае не всегда необходимо за­давать в явном виде плотность распределения.

3.1. Общеметодические подходы к количественной оценке риска

Риск - категория вероятностная, поэтому методы его количественной оцен­ки базируются на ряде важнейших понятий теории вероятностей и математической статистики. Так, главными инструментами статистического метода расчета риска являются:

1) математическое ожидание m, например, такой случайной величины, как результат финансовой операции k : m = Е {k };

2) дисперсия как характеристика степени вариации значений случайной величины k вокруг центра группирования m (напомним, что дисперсия – это математическое ожидание квадрата отклонения случайной величины от своего математического ожидания );

3) стандартное отклонение ;

4) коэффициент вариации , который имеет смысл риска на единицу среднего дохода.

Замечание. Для небольшого набора n значений – малой выборки! – дискретной случайной величины речь, строго говоря, идет лишь об оценках перечисленных измерителей риска .

Так, средним (ожидаемым) значением выборки, или выборочным аналогом математического ожидания , является величина , где р i – вероятность реализации значения случайной величины k . Если все значения равновероятны, то ожидаемое значение случайной выборки вычисляется по формуле .

Аналогично, дисперсия выборки (выборочная дисперсия ) определяется как среднеквадратичное отклонение в выборке: или

. В последнем случае выборочная дисперсия представляет собой смещенную оценку теоретической дисперсии . Поэтому предпочтительнее использовать несмещенную оценку дисперсии , которая задана формулой .

Очевидно, что оценка может быть рассчитана следующим образом или .

Ясно, что оценка коэффициента вариации принимает теперь вид .

В экономических системах в условиях риска принятие решений основывается чаще всего на одном из следующих критериев.

1. Ожидаемого значения (доходности, прибыли или расходов).

2. Выборочной дисперсии или стандартного (среднего квадратического) отклонения .

3. Комбинации ожидаемого значения и дисперсии или среднего квадратического отклонения выборки .

Замечание . Под случайной величиной k в каждой конкретной ситуации понимается соответствующий этой ситуации показатель, который обычно записывается в принятых обозначениях: mp доходность портфеля ценных бумаг , IRR – (Internal Rate of Return) внутренняя (норма) доходности и т. д.

Рассмотрим изложенную идею на конкретных примерах.

3.2. Распределения вероятностей и ожидаемая доходность

Как уже не раз говорилось, риск связан с вероятностью того, что фактическая доходность будет ниже ее ожидаемого значения. Поэтому распределения вероятностей являются основой для измерения риска проводимой операции. Однако, надо помнить, что получаемые при этом оценки носят вероятностный характер.

Пример 1 . Предположим, например, что Вы намерены инвестировать 100000 дол. сроком на один год. Альтернативные варианты инвестиций приведены в табл. 3.1.

Во-первых, это ГКО-ОФЗ со сроком погашения один год и став­кой дохода 8%, которые могут быть приобретены с дисконтом, т. е. по цене ниже номинала, а в момент погашения будет выплачена их номи­нальная стоимость.

Таблица 3.1

Оценка доходности по четырем инвестиционным альтернативам

Состояние

экономики

Вероятность

р i

Доходность инвестиций при данном состоянии экономики, %

корпоративные ценные бумаги

Глубокий спад

Незначительный спад

Стагнация

Незначительный подъем

Сильный подъем

Ожидаемая доходность

Примечание. Доходность, соответствующую различным состояниям экономики, следует рас­сматривать как интервал значений, а отдельные ее значения - как точки внутри этого интервала. Например, 10%-ная доходность облигации корпорации при незначительном спаде представляет со­бой наиболее вероятное значение доходности при данном состоянии экономики, а точечное значение используется для удобства расчетов.

Во-вторых, корпоративные ценные бумаги (голубые фишки), которые продаются по номиналу с купон­ной ставкой 9% (т. е. на 100000 дол. вложенного капитала можно получать 9000 дол. годовых) и сроком погашения 10 лет. Однако Вы собираетесь продать эти ценные бумаги в конце первого года. Следовательно, фактическая до­ходность будет зависеть от уровня процентных ставок на конец года. Этот уровень в свою очередь зависит от состояния экономики на конец года: быстрые темпы экономического развития, вероятно, вызовут повышение процентных ставок, что снизит рыночную стоимость голубых фишек; в случае эко­номического спада возможна противоположная ситуация.

В-третьих, проект капиталовложений 1, чистая стоимость которого составляет 100000 дол. Денежный поток в течение года равен нулю, все выплаты осуще­ствляются в конце года. Сумма этих выплат зависит от состояния экономики.

И, наконец, альтернативный проект капиталовложений 2, совпадающий по всем па­раметрам с проектом 1 и отличающийся от него лишь распределением вероят­ностей ожидаемых в конце года выплат .

Под распределением вероятностей , будем понимать множество вероятностей возможных исходов (в случае непрерывной случайной величины это была бы плотность распределения вероятностей). Именно в этом смысле следует истолковывать представленные в табл. 3.1 четыре распределения вероятностей, соответствующие четырем альтернативным вариантам инвестирования. Доходность по ГКО-ОФЗ точно известна. Она составляет 8% и не зависит от состояния эконо­мики.

Вопрос 1 . Можно ли риск по ГКО-ОФЗ безоговорочно считать равным нулю?

Ответ: а) да; б) думаю, что не все так однозначно, но затрудняюсь дать более полный ответ; в) нет.

Правильный ответ в).

При любом варианте ответа см. справку 1.

Справка 1 . Инвестиции в ГКО-ОФЗ являются безрисковыми только в том смысле, что их номинальная доходность не изменяется в течение данного периода времени. В то же время их реальная доходность содержит определенную долю риска, т. к. она зависит от фактических темпов роста инфляции в течение пери­ода владения данной ценной бумагой. Более того, ГКО могут представлять проблему для инвестора, который обладает портфелем ценных бумаг с целью получения непрерыв­ного дохода: когда истекает срок платежа по ГКО-ОФЗ, необходимо осуще­ствить реинвестирование денежных средств , и если процентные ставки снижаются, до­ход портфеля также уменьшится. Этот вид риска, который носит название риска нормы реинвестирования , не учитывается в нашем примере, так как период, в течение кото­рого инвестор владеет ГКО-ОФЗ, соответствует сроку их погашения. Наконец, отметим, что релевантная доходность любых инвестиций - это доходность после уплаты налогов, поэтому значения доходности, используемые для принятия решения, должны отражать доход за вычетом налогов.

По трем другим вариантам инвестирования реальные, или фактические, значения доходности не будут известны до окончания соответствующих периодов владения активами. Поскольку значения доходности не известны с полной определенно­стью, эти три вида инвестиций являются рисковыми .

Распределения вероятностей бывают дискретными или непрерывными . Дискретное распределение вероятностей имеет конечное число исходов; так, в табл. 3.1 приведены дискретные распределения вероятностей доходностей различных вариантов инвестирования. Доходность ГКО-ОФЗ принимает только одно возможное значение, тогда как каждая из трех оставшихся альтернатив имеет пять возможных исходов. Ка­ждому исходу поставлена в соответствие вероятность его появления. Например, вероятность того, что ГКО-ОФЗ будут иметь доходность 8%, равна 1.00, а вероятность того, что доходность корпоративных ценных бумаг составит 9%, равна 0.50.

Если умножить каждый исход на вероятность его появления, а затем сло­жить полученные результаты, мы получим средневзвешенную исходов. Весами служат соответствующие вероятности, а средневзвешенная представляет собой ожидаемое значение . Так как исходами являются внутренние нормы доходности (Internal Rate of Return, аббревиатура IRR), ожидаемое зна­чение - это ожидаемая норма доходности (Expected Rate of Return, аббревиатура ERR), которую можно представить в следующем виде:

ERR = IRRi, (3.1)

где IRRi, - i-й возможный исход; pi - вероятность появления i-го исхода; п - число возможных исходов.

Рассказать друзьям