Методы статистических решений. Задача принятия решений в условиях неопределенности Метод минимального риска

💖 Нравится? Поделись с друзьями ссылкой

Метод минимального риска. Этот метод был развит в связи с задачами радиолокации, но может вполне успешно использоваться в задачах технической диагностики.

Пусть проводится измерение параметра х (например, уровня вибраций изделия) и на основании данных измерений требуется сделать вывод о возможности продолжения эксплуатации (диагноз - исправное состояние) или о направлении изделия в ремонт (диагноз - неисправное состояние).

На рис. 1 даны значения плотности вероятности диагностического параметра х для двух состояний.

Пусть установлена контрольная норма для уровня вибраций .

В соответствии с этой нормой принимают:

Знак означает, что объект с уровнем вибраций х относят к данному состоянию.

Из рис. 1 следует, что любой выбор величины связан с определенным риском, так как кривые пересекаются.

Существуют два вида риска: риск «ложной тревоги», когда исправное изделие признают неисправным, и риск «пропуска цели», когда неисправное изделие считают годным.

В теории статистического контроля их называют риском поставщика и риском приемщика или ошибками первого и второго рода.

При данном вероятность ложной тревоги

и вероитность пропуска цели

Задача теории статистических решений состоит в выборе оптимального значения

По способу минимального риска рассматривается общая стоимость риска

где - «цена» ложной тревоги; - «цена» пропуска цели; - априорные вероятности диагнозов (состояний), определяемые по предварительным

Рис. 1. Плотность вероятности диагностического признака

статистическим данным. Величина представляет собой «среднее значение» потери при ошибочном решении.

Из необходимого условия минимума

получаем

Можно показать, что для одномодальных распределений условие (23) всегда обеспечивает минимум величины Если стоимость ошибочных решений одинакова, то

Последнее соотношение минимизирует общее число ошибочных решений. Оно вытекает также из метода Байеса.

Метод Неймана-Пирсона. В этом методе исходят из условия минимума вероятности пропуска дефекта при допустимом уровне вероятности ложной тревоги.

Таким образом, вероятность ложной тревоги

где - допустимый уровень ложной тревоги.

В рассматриваемых однопараметрических задачах минимум вероятности пропуска цели достигается при

Последнее условие и определяет граничное значение параметра (значение

При назначении величины а учитывают следующее:

1) число снимаемых с эксплуатации изделий должно превышать ожидаемое число дефектных изделий в силу неизбежных погрешностей метода оценки состояния;

2) принимаемое значение ложной тревоги не должно, без крайней необходимости, нарушать нормальную эксплуатацию или приводить к большим экономическим потерям.

Метод минимального риска используется для определения граничного значения определяющего параметра для принятия решения о состоянии объекта, исходя из условия минимума средних затрат.

Пусть состояние некоторого объекта определяется значением некоторого параметра х. необходимо выбрать такое значение этого параметра х 0 , чтобы:

Исправное состояние характеризуется плотностью распределения параметра х, f (x / D 1) а неисправное – f(x / D 2) (рис 2.8). Кривые f (x / D 1) и f(x / D 2) пересекаются и поэтому невозможно выбрать х 0 так, чтобы правило (2.16) не давало бы ошибочных решений.

Возникающие при принятии решения ошибки подразделяют на ошибки первого и второго рода.

Ошибка первого рода – принятие решения о неисправности (наличии дефекта) объекта, когда в действительности объект находится в исправном состоянии.

Ошибка второго рода – принятие решения об исправном состоянии объекта, когда в действительности объект находится в неисправном состоянии (объект содержит дефект).

Вероятность ошибки первого рода равна произведению вероятности двух событий:

    вероятности того, что объект находится в исправном состоянии;

    вероятности того, что значение определяющего параметра х превысит граничное значение х 0 .

Выражение для определения вероятности ошибки первого рода имеет вид:

где p(D 1 ) – априорная вероятность нахождения объекта в исправном состоянии (считается известной на основании предварительных статистических данных).

Аналогично определяется вероятность ошибки второго рода:

Рис. 2.8. Плотности вероятностей состояний объекта диагностирования

Элементы систем сбора информации: унифицирующие измерительные преобразователи.

Для согласования первичного преобразователя с устройствами системы сбора информации его выходной сигнал должен быть унифицирован, т.е. отвечать некоторым требованиям по уровню, мощности, виду носителя информации и т.д., которые определяются соответствующими ГОСТ.

Для преобразования выходных сигналов первичных преобразователей в унифицированные применяется ряд нормирующих преобразователей. На вход нормирующих преобразователей могут подаваться естественные сигналы первичных преобразователей различных физических величин, а на выходе формируются соответствующие унифицированные сигналы.

Группа средств, обеспечивающих унификацию сигнала между его источником или выходом первичного преобразователя и входом вторичного устройства, относится к классу унифицирующих измерительных преобразователей (УИП).

Различают следующие типы УИП:

    индивидуальные;

    групповые;

    многоканальные.

Индивидуальные УИП (рис. 3.36а)) обслуживают один ПП и включаются между ПП и коммутатором или последующим измерительным преобразователем. Индивидуальные УИП размещаются вместе с ПП непосредственно на объекте исследования.

Они используются для унификации сигналов при сравнительно небольшом количестве измеряемых параметров и при ограниченном времени измерения, не позволяющем использовать групповые УИП.

Индивидуальные УИП позволяют производить:

    преобразование одного унифицированного сигнала в другой;

    гальваническую развязку входных цепей;

    размножение входного сигнала по нескольким выходам.

Однако применение в каждом измерительном комплексе ИИС своего УИП усложняет систему и снижает ее надежность и экономическую эффективность.

Групповые УИП (рис. 3.36б)) являются более эффективными с этой точки зрения они обслуживают определенную группу первичных преобразователей, выходные сигналы которых представляют собой однородные физические величины. Они располагаются в Ииспосле коммутатора и управляются совместно с последним блоком управления.

При построении многоканальных ИИС разнородных физических величин последние группируются по роду физической величины, а каждая группа подключается к соответствующему групповому УИП.

Многоканальные УИП. (рис. 3.36в)) Если измеряемые физические величины в основном разнородные, то в ИИС могут применяться многоканальные УИП, которые представляют собой объединенные в одном корпусе или одной плате несколько индивидуальных УИП. Преобразование информации осуществляется поn входам иn выходам. Основной конструктивной особенностью многоканального УИП является использование общих источника питания и системы контроля для всех индивидуальных УИП.

Рис. 3.36.основные типы унифицирующих

измерительных преобразователей

Основные функции, выполняемые УИП:

    линейные (масштабирование, установление нуля, температурная компенсация);

    нелинейные (лианеризация) преобразования сигналов.

При линейной характеристике первичного преобразователя УИП выполняет линейные операции, которые называются масштабированием . Суть масштабирования заключается в следующем. Пусть входной сигнал изменяется в пределах отy 1 доy 2 , а динамический диапазон выходного сигнала УИП должен лежать в пределах от0 доz . Тогда для совмещения начала динамических диапазонов УИП и первичного преобразователя к сигналу ПП должен быть добавлен сигнал, а затем суммарный сигнал должен быть усилен враз.

Возможен также вариант, при котором выходной сигнал ПП сначала усиливается, а потом совмещаются начала динамических диапазонов.

Первый вариант приведения выходного сигнала к унифицированному виду обычно используется в индивидуальных УИП, а второй в групповых.

Т.к. связь между выходным сигналом yПП и измеряемым параметром чаще всего нелинейная (например, у термопар, платиновых термопреобразователей сопротивления и т.д.) УИП должен выполнять операциюлинеаризации . Линеаризация заключается в спрямлении функции преобразования ПП. В этом случае линеаризующая функция должна иметь вид обратной функции преобразования ПП.

Для линеаризации функции преобразования в УИП используются специальные нелинейные звенья. Они могут включаться до линейного

унифицирующего преобразователя, после него или в цепь обратной связи усилителя, используемого для изменения масштаба измеряемой величины.

U вх

U ОС

U вых

R 1

R 2

R 3

R 4

R 5

D 1

D 2

D 3

Чаще всего линеаризация достигается кусочно–линейной аппроксимацией и выполняется с помощью цепочки последовательно соединенных резисторов, шунтированных стабилитронами или диодами Д 1 Д 3

Рис. 3.37.структурная схема УИП

С ростом напряжения на выходе усилителя увеличивается ток делителя и падение напряжения на каждом из резисторов R 1 R 5 .как только падение напряжения на каком-либо из резисторов достигает напряжения пробоя соответствующего стабилитрона, стабилитрон начинает шунтировать этот резистор. Сопротивления резисторов подбираются таким образом, чтобы получать требуемую зависимость напряжения обратной связиU ОС инвертирующего усилителяУ , снимаемого с резистораR 5 , от выходного напряжения усилителя.

Типовой аналоговый УИП содержит в своем составе:

    выходной усилитель;

    устройство гальванической развязки;

    функциональный преобразователь, линеаризующий сигнал ПП;

    выходной усилитель;

    стабилизированный источник питания.

Некоторые первичные преобразователи в качестве выходного имеют сигнал переменного тока такой сигнал модулируется либо по амплитуде (например, дифференциальные трансформаторные преобразователи), либо по частоте (например, пьезорезонаторы).

В качестве примера рассмотрим структурную схему УИП, предназначенного для преобразования переменного напряжения датчиков давления, перепада давления, расхода, уровня, паросодержания в унифицированный сигнал постоянного тока 0…5 мА (рис. 3.38.).

Рис. 3.38. Структурная схема УИП

Переменное напряжение с дифференциального трансформаторного первичного преобразователя демодулятором преобразуется в пропорциональное напряжение постоянного тока, которое усиливается магнитным МУ и электроннымУ усилителями постоянного тока, охваченными глубокой отрицательной обратной связью через устройство обратной связиОС , позволяющее при необходимости линеаризовать характеристику первичного преобразователя.

Унифицирующие измерительные преобразователи, работающие с частотными ПП, должны выполнять те же функции, что и УИП амплитудных ПП.

Пример 2.5. Для приведенной в примере 2.1 матрицы последствий выбрать наилучший вариант решения на основе критерия Гурвица при λ =1/2.

Решение. Рассматривая матрицу последствий Q по строкам, для каждого i вычисляем значения ci= 1/2minqij + 1/2maxqij. Например, с1=1/2*2+1/2*8=5; аналогично находятся с2=7; с3=6,5; с4= 4,5. Наибольшим является с2=7. Следовательно, критерий Гурвица при заданном λ =1/2 рекомендует выбрать второй вариант (i=2 ).

2.3. Анализ связанной группы решений в условиях частичной

неопределенности

Если при принятии решения ЛПР известны вероятности pj того, что реальная ситуация может развиваться по варианту j, то говорят, что ЛПР находится в условиях частичной неопределенности. В этом случае можно руководствоваться одним из следующих критериев (правил).

Критерий (правило) максимизации среднего ожидаемого дохода . Этот критерий называется также критерием максимума среднего выигрыша. Если известны вероятности pj вариантов развития реальной ситуации, то доход, получаемый при i-ом решении, является случайной величиной Qi с рядом распределения

Математическое ожидание M [Qi ] случайной величины Qi и есть средний ожидаемый доход, обозначаемый также :

= M [Qi ] = .

Для каждого i-го варианта решения рассчитываются величины , и в соответствии с рассматриваемым критерием выбирается вариант, для которого достигается

Пример 2.6. Пусть для исходных данных примера 2.1 известны вероятности развития реальной ситуации по каждому из четырех вариантов, образующих полную группу событий:


p1 =1/2, p2=1/6, p3=1/6, p4=1/6. Выяснить, при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Найдем для каждого i-го варианта решения средний ожидаемый доход: =1/2*5+1/6*2+1/6*8+1/6*4= 29/6, = 25/6, = 7, = 17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска (другое название –критерий минимума среднего проигрыша ).

В тех же условиях, что и в предыдущем случае, риск ЛПР при выборе i-го решения является случайной величиной Ri с рядом распределения

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также : = M = . . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск: .

Пример 2.7 . Исходные данные те же, что и в примере 2.6. Определить, при каком варианте решения достигается наименьший средний ожидаемый риск, и найти величину минимального среднего ожидаемого риска (проигрыша).

Решение. Для каждого i-го варианта решения найдем величину среднего ожидаемого риска. На основе заданной матрицы риска R найдем: = 1/2*3+1/6*3+1/6*0+1/6*8=20/6, = 4, = 7/6, = 32/6.

Следовательно, минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению: = 7/6.

Замечание . Когда говорят о среднем ожидаемом доходе (выигрыше) или о среднем ожидаемом риске (проигрыше), то подразумевают возможность многократного повторения процесса принятия решения по описанной схеме или фактическое неоднократное повторение такого процесса в прошлом. Условность данного предположения заключается в том, что реально требуемого количества таких повторений может и не быть.

Критерий (правило) Лаплпаса равновозможности (безразличия) . Этот критерий непосредственно не относится к случаю частичной неопределеннос-ти, и его применяют в условиях полной неопределенности. Однако здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны – отсюда и название критерия. Тогда описанные выше схемы расчета можно применить, считая вероятности pj одинаковыми для всех вариантов реальной ситуации и равными 1/n. Так, при использовании критерия максимизации среднего ожидаемого дохода выбирается решение, при котором достигается . А в соответсвии с критерием минимизации среднего ожидаемого риска выбирается вариант решения, для которого обеспечивается .

Пример 2.8. Используя критерий Лапласа равновозможности для исходных данных примера 2.1, выбрать наилучший вариант решения на основе: а) правила максимизации среднего ожидаемого дохода; б) правила минимизации среднего ожидаемого риска.

Решение. а) С учетом равновероятности вариантов реальной ситуации величины среднего ожидаемого дохода для каждого из вариантов решения составляют = (5+2+8+4)/4=19/4, = 21/4, = 26/4, = 15/4. Следовательно, наилучшим вариантом решения будет третий, и максимальный средний ожидаемый доход буде равен 26/4.

б) Для каждого варианта решения рассчитаем величины среднего ожидаемого риска на основе матрицы рисков с учетом равновероятности вариантов ситуации: = (3+3+0+8)/4 = 14/4, = 3, = 7/4, = 18/4. Отсюда следует, что наилучшим будет третий вариант, и при этом минимальный средний ожидаемый риск составит 7/4.

2.4. Оптимальность по Парето двухкритериальных финансовых

операций в условиях неопределенности

Из рассмотренного выше следует, что каждое ре­шение (финансовая операция) имеет две характеристики, которые нуждаются в оптимизации: средний ожидаемый доход и средний ожидаемый риск. Таким образом, выбор наилучшего решения является оптими­зационной двухкритериальной задачей. В задачах многокритериальной оптимизации основным понятием является понятие оптимальности по Парето . Рассмотрим это понятие для финансовых операций с двумя указанными характеристиками.

Пусть каждая операция а имеет две числовые характеристики Е(а), r (а) (например, эффективность и риск); при оптимизации Е стремятся увеличить, а r уменьшить.

Существует несколько способов постановки таких оптимизационных задач. Рассмотрим такую задачу в общем виде. Пусть А - не­которое множество операций, и разные операции обязательно различаются хо­тя бы одной характеристикой. При выборе наилучшей опе­рации желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b , и обозначать а > b, если Е(а) ≥ Е(b ) и r (a ) r(b ) и хотя бы одно из этих неравенств строгое. При этом операция а на­зывается доминирующей , а операция b – доминируемой . Очевидно, что никакая доминируемая операция не может быть признана наилучшей . Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество недоминируемых операций назы­вается множеством (областью) Парето или множеством оптимально­сти по Парето .

Для множества Парето справедливо утверждение: каждая из характе­ристик Е, r является однозначной функцией другой, т. е. на множестве Парето по од­ной характеристике операции можно однозначно определить другую.

Вернемся к анализу финансовых решений в условиях частичной неопределенности. Как показано в разделе 2.3, каждая операция характеризуется средним ожидаемым риском и средним ожидаемым доходом . Если ввести прямоугольную систему координат, на оси абсцисс которой откладывать значения , а на оси ординат – значения , то каждой операции будет соответствовать точка (, ) на координатной плоскости. Чем выше эта точка на плоскости, тем доходнее операция; чем правее точка, тем более рисковая операция. Следовательно, при поиске недоминируемых операций (множества Парето) нужно выбирать точки выше и левее. Таким образом, множество Парето для исходных данных примеров 2.6 и 2.7 состоит только из одной третьей операции.

Для определения лучшей операции в ряде случаев можно применять некоторую взвешивающую формулу, в которую характеристики и входят с определенными весами, и которая дает одно число, задающее лучшую операцию. Пусть, например, для операции i с характеристиками (, ) взвешивающая формула имеет вид f(i) = 3 - 2 , и наилучшая операция выбирается по максимуму величины f(i) . Эта взвешивающая формула означает, что ЛПР согласен на увеличение риска на три единицы, если доход операции увеличится при этом не менее, чем на две единицы. Таким образом, взвешивающая формула выражает отношение ЛПР к показателям дохода и риска.

Пример 2.9. Пусть исходные данные те же, что и в примерах 2.6 и 2.7, т. е. для матриц последствий и риска примера 2.1 известны вероятности вариантов развития реальной ситуации: p1 =1/2, p2=1/6, p3=1/6, p4=1/6. В этих условиях ЛПР согласен на увеличение риска на две единицы, если при этом доход операции увеличится не менее, чем на одну единицу. Определить для этого случая наилучшую операцию.


Решение. Взвешивающая формула имеет вид f(i) = 2 - . Используя результаты расчетов в примерах 2.6 и 2.7, находим:

f(1) = 2*29/6 – 20/6 = 6,33; f(2) = 2*25/6 – 4 = 4,33;

f(3) = 2*7 – 7/6 = 12,83; f(4) = 2*17/6 – 32/6 = 0,33

Следовательно, лучшей является третья операция, а худшей – четвертая.

Тема 3. Измерители и показатели финансовых рисков

Количественная оценка риска. Риск отдельной операции. Общие измерители риска.

В данной теме рассматриваются критерии и методы принятия решений в тех случаях, когда предполагается, что распределения вероятностей возможных исходов либо известны, либо они могут быть найдены, причем в последнем случае не всегда необходимо за­давать в явном виде плотность распределения.

3.1. Общеметодические подходы к количественной оценке риска

Риск - категория вероятностная, поэтому методы его количественной оцен­ки базируются на ряде важнейших понятий теории вероятностей и математической статистики. Так, главными инструментами статистического метода расчета риска являются:

1) математическое ожидание m, например, такой случайной величины, как результат финансовой операции k : m = Е {k };

2) дисперсия как характеристика степени вариации значений случайной величины k вокруг центра группирования m (напомним, что дисперсия – это математическое ожидание квадрата отклонения случайной величины от своего математического ожидания );

3) стандартное отклонение ;

4) коэффициент вариации , который имеет смысл риска на единицу среднего дохода.

Замечание. Для небольшого набора n значений – малой выборки! – дискретной случайной величины речь, строго говоря, идет лишь об оценках перечисленных измерителей риска .

Так, средним (ожидаемым) значением выборки, или выборочным аналогом математического ожидания , является величина , где р i – вероятность реализации значения случайной величины k . Если все значения равновероятны, то ожидаемое значение случайной выборки вычисляется по формуле .

Аналогично, дисперсия выборки (выборочная дисперсия ) определяется как среднеквадратичное отклонение в выборке: или

. В последнем случае выборочная дисперсия представляет собой смещенную оценку теоретической дисперсии . Поэтому предпочтительнее использовать несмещенную оценку дисперсии , которая задана формулой .

Очевидно, что оценка может быть рассчитана следующим образом или .

Ясно, что оценка коэффициента вариации принимает теперь вид .

В экономических системах в условиях риска принятие решений основывается чаще всего на одном из следующих критериев.

1. Ожидаемого значения (доходности, прибыли или расходов).

2. Выборочной дисперсии или стандартного (среднего квадратического) отклонения .

3. Комбинации ожидаемого значения и дисперсии или среднего квадратического отклонения выборки .

Замечание . Под случайной величиной k в каждой конкретной ситуации понимается соответствующий этой ситуации показатель, который обычно записывается в принятых обозначениях: mp доходность портфеля ценных бумаг , IRR – (Internal Rate of Return) внутренняя (норма) доходности и т. д.

Рассмотрим изложенную идею на конкретных примерах.

3.2. Распределения вероятностей и ожидаемая доходность

Как уже не раз говорилось, риск связан с вероятностью того, что фактическая доходность будет ниже ее ожидаемого значения. Поэтому распределения вероятностей являются основой для измерения риска проводимой операции. Однако, надо помнить, что получаемые при этом оценки носят вероятностный характер.

Пример 1 . Предположим, например, что Вы намерены инвестировать 100000 дол. сроком на один год. Альтернативные варианты инвестиций приведены в табл. 3.1.

Во-первых, это ГКО-ОФЗ со сроком погашения один год и став­кой дохода 8%, которые могут быть приобретены с дисконтом, т. е. по цене ниже номинала, а в момент погашения будет выплачена их номи­нальная стоимость.

Таблица 3.1

Оценка доходности по четырем инвестиционным альтернативам

Состояние

экономики

Вероятность

р i

Доходность инвестиций при данном состоянии экономики, %

корпоративные ценные бумаги

Глубокий спад

Незначительный спад

Стагнация

Незначительный подъем

Сильный подъем

Ожидаемая доходность

Примечание. Доходность, соответствующую различным состояниям экономики, следует рас­сматривать как интервал значений, а отдельные ее значения - как точки внутри этого интервала. Например, 10%-ная доходность облигации корпорации при незначительном спаде представляет со­бой наиболее вероятное значение доходности при данном состоянии экономики, а точечное значение используется для удобства расчетов.

Во-вторых, корпоративные ценные бумаги (голубые фишки), которые продаются по номиналу с купон­ной ставкой 9% (т. е. на 100000 дол. вложенного капитала можно получать 9000 дол. годовых) и сроком погашения 10 лет. Однако Вы собираетесь продать эти ценные бумаги в конце первого года. Следовательно, фактическая до­ходность будет зависеть от уровня процентных ставок на конец года. Этот уровень в свою очередь зависит от состояния экономики на конец года: быстрые темпы экономического развития, вероятно, вызовут повышение процентных ставок, что снизит рыночную стоимость голубых фишек; в случае эко­номического спада возможна противоположная ситуация.

В-третьих, проект капиталовложений 1, чистая стоимость которого составляет 100000 дол. Денежный поток в течение года равен нулю, все выплаты осуще­ствляются в конце года. Сумма этих выплат зависит от состояния экономики.

И, наконец, альтернативный проект капиталовложений 2, совпадающий по всем па­раметрам с проектом 1 и отличающийся от него лишь распределением вероят­ностей ожидаемых в конце года выплат .

Под распределением вероятностей , будем понимать множество вероятностей возможных исходов (в случае непрерывной случайной величины это была бы плотность распределения вероятностей). Именно в этом смысле следует истолковывать представленные в табл. 3.1 четыре распределения вероятностей, соответствующие четырем альтернативным вариантам инвестирования. Доходность по ГКО-ОФЗ точно известна. Она составляет 8% и не зависит от состояния эконо­мики.

Вопрос 1 . Можно ли риск по ГКО-ОФЗ безоговорочно считать равным нулю?

Ответ: а) да; б) думаю, что не все так однозначно, но затрудняюсь дать более полный ответ; в) нет.

Правильный ответ в).

При любом варианте ответа см. справку 1.

Справка 1 . Инвестиции в ГКО-ОФЗ являются безрисковыми только в том смысле, что их номинальная доходность не изменяется в течение данного периода времени. В то же время их реальная доходность содержит определенную долю риска, т. к. она зависит от фактических темпов роста инфляции в течение пери­ода владения данной ценной бумагой. Более того, ГКО могут представлять проблему для инвестора, который обладает портфелем ценных бумаг с целью получения непрерыв­ного дохода: когда истекает срок платежа по ГКО-ОФЗ, необходимо осуще­ствить реинвестирование денежных средств , и если процентные ставки снижаются, до­ход портфеля также уменьшится. Этот вид риска, который носит название риска нормы реинвестирования , не учитывается в нашем примере, так как период, в течение кото­рого инвестор владеет ГКО-ОФЗ, соответствует сроку их погашения. Наконец, отметим, что релевантная доходность любых инвестиций - это доходность после уплаты налогов, поэтому значения доходности, используемые для принятия решения, должны отражать доход за вычетом налогов.

По трем другим вариантам инвестирования реальные, или фактические, значения доходности не будут известны до окончания соответствующих периодов владения активами. Поскольку значения доходности не известны с полной определенно­стью, эти три вида инвестиций являются рисковыми .

Распределения вероятностей бывают дискретными или непрерывными . Дискретное распределение вероятностей имеет конечное число исходов; так, в табл. 3.1 приведены дискретные распределения вероятностей доходностей различных вариантов инвестирования. Доходность ГКО-ОФЗ принимает только одно возможное значение, тогда как каждая из трех оставшихся альтернатив имеет пять возможных исходов. Ка­ждому исходу поставлена в соответствие вероятность его появления. Например, вероятность того, что ГКО-ОФЗ будут иметь доходность 8%, равна 1.00, а вероятность того, что доходность корпоративных ценных бумаг составит 9%, равна 0.50.

Если умножить каждый исход на вероятность его появления, а затем сло­жить полученные результаты, мы получим средневзвешенную исходов. Весами служат соответствующие вероятности, а средневзвешенная представляет собой ожидаемое значение . Так как исходами являются внутренние нормы доходности (Internal Rate of Return, аббревиатура IRR), ожидаемое зна­чение - это ожидаемая норма доходности (Expected Rate of Return, аббревиатура ERR), которую можно представить в следующем виде:

ERR = IRRi, (3.1)

где IRRi, - i-й возможный исход; pi - вероятность появления i-го исхода; п - число возможных исходов.

Рассмотрим классическую схему принятия решений в условиях неопределённости.

Напомним, что финансовой называется операция, начальное и конечное состояния которой имеют денежную оценку, и цель проведения которой заключается в максимизации дохода – разности между конечной и начальной оценками. Почти всегда финансовые операции проводятся в условиях неопределённости и поэтому их результат невозможно предсказать заранее. Проводящий операцию называется ЛПР – Лицо, Принимающее Решение (во многих случаях ЛПР – это инвестор). Операция называется рискованной , если она может иметь несколько исходов, не равноценных для ЛПР.

Задача. Рассмотрим 3 операции с одним и тем же множеством двух исходов – альтернатив А и В, которые характеризуют доходы, получаемые ЛПР.

Все 3 операции рискованные. Для 1-ой и 2-ой это очевидно, но почему считается рискованной 3-я операция? Ведь она сулит только положительные доходы ЛПР? Рассматривая возможные исходы 3-ей операции, видим, что можем получить доход в размере 20 ед., поэтому возможность получения дохода в 15 ед. рассматривается как неудача, как риск недополучить 5 ед. дохода.

Как оценить финансовую операцию с точки зрения её доходности и риска? На этот вопрос не так просто ответить, главным образом из-за многогранности понятия риска. Существует несколько разных способов такой оценки. Рассмотрим один из таких подходов.

Матрицы последствий и рисков. Пусть рассматривается вопрос о проведении финансовой операции, имеющей несколько возможных исходов. В связи с этим проводится анализ возможных решений и их последствий. Предположим, что ЛПР рассматривает m возможных решений: i = 1,…, m . Ситуация неопределённа, известно лишь, что имеет место один из n вариантов: j = 1,…, n . Если будет принято i -тое решение, а ситуация сложится j -тая, то доход, полученный ЛПР будет равен q ij . Матрица Q = (q ij ) называется матрицей последствий (возможных решений ). Какое же решение нужно принять ЛПР? В этой неопределённой ситуации могут быть высказаны лишь некоторые рекомендации. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме? Допустим, мы хотим оценить риск, который несёт i -тое решение. Нам неизвестна реальная ситуация, но если бы мы её знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Если ситуация j -тая, то принимается решение, дающее доход . Значит, принимаяi -тое решение, мы рискуем получить не , а толькоq ij , т.е. принятие i -того решения несёт риск недобрать . МатрицуR = () называютматрицей рисков .

Задача. Пусть есть матрица последствий:.

Составим матрицу рисков:.

Ситуация полной неопределённости характеризуется отсутствием какой бы то ни было дополнительной информации (например, о вероятностях тех или иных вариантов реальной ситуации). Какие же существуют правила-рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма ). Если руководствоваться этим критерием, надо всегда ориентироваться на худшие условия, зная наверняка, что «хуже этого не будет». Рассматривая i -тое решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: . Теперь выберем решениеi 0 с наибольшим :. В задаче имеемИз этих чисел находим максимальное – 3. Правило Вальда рекомендует принять 3-е решение. Очевидно, такой подход – «перестраховочный», естественный для того, кто очень боится проиграть.

Правило Сэвиджа (правило минимального риска ). Этот критерий тоже крайне пессимистический, но при выборе оптимальной стратегии советует ориентироваться не на величину дохода, а на риск. При применении этого правила анализируется матрица рисков R = ().Рассматриваяi -тое решение, будем полагать, что на самом деле складывается ситуация максимального риска . Теперь выберем решениеi 0 с наименьшим :. В задаче имеемВ задаче имеемИз этих чисел находим минимальное – 5. Правило Сэвиджа рекомендует принять 3-е решение. Сущность такого подхода в том, чтобы всячески избегать большого риска при принятии решения.

Правило Гурвица (пессимизма-оптимизма ). Этот критерий рекомендует при выборе решения не руководствоваться ни крайним пессимизмом, ни крайним оптимизмом. Принимается решение, при котором достигается максимум , где- «коэффициент пессимимзма». Значениевыбирается из субъективных соображений. Еслиприближается к 1, правило Гурвица приближается к правилу Вальда, при приближениик 0 правило Гурвица приближается к правилу «крайнего оптимизма», рекомендующему выбирать ту стратегию, при которой выигрыш в строке максимален. В задаче прикритерий Гурвица рекомендует 2-ое решение.

Предположим, что в рассматриваемой схеме известны вероятности того, что реальная ситуация развивается по вариантуj . Такое положение называется частичной неопределённостью . Какие рекомендации по принятию решения в этом случае? Можно руководствоваться одним из следующих правил.

Правило максимизации среднего ожидаемого дохода. Доход, получаемый компанией при реализации i -ого решения, является случайной величиной с законом распределения

q i1

q i2

q in

Математическое ожидание этой случайной величины и есть средний ожидаемый доход. Критерий рекомендует принять решение, максимизирующее средний ожидаемый доход.

Задача. Пусть в предыдущей задаче ТогдаМаксимальный средний ожидаемый доход равен 7, что соответствует 3-ему решению.

Правило минимизации среднего ожидаемого риска. Риск компании при реализации i -ого решения является случайной величиной с законом распределения

r i1

r i2

r in

Математическое ожидание этой случайной величины и есть средний ожидаемый риск. Критерий рекомендует принять решение, минимизирующее средний ожидаемый риск.

Рассказать друзьям