Проактивное техобслуживание структура технической службы. Проактивное техническое обслуживание оборудования. Стратегии технического обслуживания и ремонтов оборудования

💖 Нравится? Поделись с друзьями ссылкой

В настоящее время многие компании стали сокращать свои затраты, и большинство из них, помимо процессов продаж и закупок, стали оптимизировать процессы технического обслуживания и ремонта оборудования (ТОРО). Ведь, если раньше кредитные деньги были доступны, и существующее оборудование можно было легко обновить, то сейчас приходится довольствоваться имеющимися мощностями, что требует серьезной оптимизации процесса ТОРО уже сейчас.

Ключевые принципы ТОРО

Для большинства ключевых российских отраслей процесс ТОРО можно назвать одним из основных. В нефтяной, перерабатывающей, машиностроительной, транспортной, фармацевтической, телекоммуникационной и многих других отраслях затраты на ремонт оборудования являются ключевыми, а значит содержат серьезный потенциал для оптимизации. К тому же для многих российских компаний оборудование является ключевым элементом производственного цикла, и «выжать» из него по максимуму является одной из задач менеджмента. Хорошо известно, что на рынке победит та компания, которая сможет с меньшим ресурсом поддерживать требуемое качество результатов, и серьезное условие этого – правильно выстроенный процесс технического обслуживания и ремонта оборудования (ТОРО).

На стратегическом уровне в процессе ТОРО для руководителя существует одна ключевая задача – найти баланс между производительностью и надежностью оборудования и его стоимостью владения. С одной стороны, можно использовать превентивное (плановое) управление ремонтами, что надежнее, но и дороже. А с другой стороны, можно обходиться реактивными действиями по замене и ремонту оборудования в случае его отказов, что дешевле, но за счет надежности. Именно поэтому для эффективного управления ремонтами требуется совмещение в данном процессе сразу нескольких управленческих подходов. врезка «Один из главных факторов операционного совершенства — эффективная работа оборудования.

Многие российские компании заметно отстают по этому показателю от западных: оборудование слишком часто ломается, простаивает, неразумно эксплуатируется. Причину такого положения стоит искать в сфере, которая находится на периферии внимания руководителей. Это — ремонты и техобслуживание. Реорганизовать ее с учетом современных требований нелегко, но необходимость преобразований с каждым годом будет ощущаться все острее». (McKinsey) конец врезки В первую очередь все активности в рамках процесса ТОРО можно разделить на две основные части – плановые и внеплановые работы. В основе плановых ремонтов лежит несколько принципов планирования (по календарю, по наработке, по состоянию), все это можно назвать проактивными (предупредительными) ремонтами.

Также к плановым ремонтам можно отнести работы по регламентному обслуживанию оборудования. В рамках таких плановых активностей, ключевую роль играет качество планирования, и здесь необходимо анализировать множество различной информации, как по статистике отказов оборудования, так и по параметрам, характеризующим состояние оборудования в настоящий момент. Помимо качества «телеметрии» состояния оборудования, на качество планирования ремонтов влияет и логика процессов обработки неисправностей и правильность формирования заявок на выполнения ремонтов и множество других факторов. Внеплановые работы в процессе ТОРО заключаются в устранении последствий аварий оборудования. Такое может случиться, если плановый ремонт не снял всевозможные риски, и отказ все-таки произошел. В этом случае, необходимо максимально быстро восстановить работоспособность оборудования, обеспечив непрерывность бизнеса.

По такой реактивной схеме может обслуживаться оборудование, не задействованное напрямую в производственном процессе, отказ которого не принесет серьезного ущерба. Можно выделить четыре ключевых принципа организации процесса ТОРО. Наиболее надежный из них проактивный подход (плановый ремонт по календарю), подразумевает приоритетность техобслуживания и ремонтов для критичного оборудования, например, если закончилось время регламентного срока службы, то просто меняем оборудование, не смотря на то, что оно еще может работать. Однако, если с помощью такого подхода ремонтировать все оборудование, то затраты компании серьезно вырастут. Именно поэтому такой подход используют лишь для критичного оборудования, поломка которого может привести к простою компании и нанести большие убытки.

Следующим подходом является комбинированный подход к обслуживанию оборудования. Этот подход позволяет планировать ремонт по фактическому состоянию, т.е. контролируем работу существующего оборудования, и не дожидаясь поломки, меняем его на основании ухудшения его параметров. Реализация ремонтов по такой схеме уменьшает надежность, но зато делает затраты меньше, чем в первом варианте. В тоже время необходимо отметить, что комбинированный подход требует серьезной системы мониторинга оборудования, ведь без нее предотвратить аварию будет сложно. Еще одним вариантом организации ремонтов является причинно-следственный анализ на основании поломок или отказов. Этот подход уже можно назвать реактивным, однако он содержит анализ причины поломок и планирование мероприятий по их минимизации в будущем.

Таким образом, в случае аварии оборудования, восстанавливаем его максимально быстро, а затем анализируем причины аварии, и планируем корректирующие мероприятия по предотвращению поломок в будущем. Наиболее простым подходом к ремонту оборудования является обслуживание по факту отказа или поломки. При обнаружении поломки ремонтируем оборудование в кратчайшие сроки, после чего не предпринимаем усилий до следующей неисправности. С одной стороны дешево, а с другой вполне возможно, что необходимой запчасти на складе нет, или процедура замены технологически сложна, поэтому убытки от простоя оборудования могут быть больше полученных преимуществ от сокращения затрат. И не смотря на то, что общая практика ремонтов склоняется к проактивному принципу организации процесса ТОРО, в жизни приходится использовать все вышеперечисленные подходы для разных типов оборудования. При этом, типизация оборудования ведется исходя из анализа рисков, которые присущи определенному производству с учетом этапов жизненного цикла оборудования. Например, если реализован непрерывный производственный цикл, и отказ оборудования приведет к нарушению цикла, то безусловно ремонты нужно будет выполнять на превентивной основе. В тоже время, если от отказа компонента производство не остановится, то можно сокращать затраты используя реактивный подход.

Совершенствование процесса ТОРО

Для оптимизации любого процесса, и в том числе ТОРО, необходимо сформировать цель, которую это процесс должен обеспечивать. Например, цель может выглядеть следующим образом — обеспечивать надежность, бесперебойность и безопасность оборудования экономически целесообразным образом. При этом для оценки качества существующего процесса ТОРО можно использовать следующие показатели: ·

  • средняя механическая готовность, например 95 %; ·
  • затраты на ТОРО; ·
  • факт/план рабочей мощности; ·
  • % простоя оборудования (ремонты); ·
  • качество планирования ТОРО; ·
  • необходимый объем складских запасов комплектующих и запасных частей; ·
  • количество инцидентов с оборудованием за период; ·
  • среднее время устранения неисправности.

Анализирую данные показатели в динамике, можно определить те направления оптимизации процесса, которые позволяет его усовершенствовать. Но это только вершина айсберга, ведь для полноценного анализа процесса ТОРО необходимо куда больше показателей. И здесь требуется анализировать две сквозные цепочки процесса. Первая — от обнаружения неисправности до ее устранения, и вторая — от планирования ремонтов до исполнения плана. При этом совмещение проактивного и реактивного управления требует синхронизировать эти цепочки между собой, что является непростой управленческой задачей. Дополнительных сложностей в работе процесса ТОРО добавляет необходимость интеграции с производственным процессом и процессом закупок, что требует определенных мероприятий и в этих направлениях.

Поэтому на практике, в качестве основных направлений совершенствования процесса ТОРО выбираются следующие: ·

  • приоритезация оборудования с учетом оценки рисков негативного воздействия от неисправности; ·
  • определение алгоритмов планирования ремонтов и устранения отказов в зависимости от определенных приоритетов по оборудованию; ·
  • синхронизация проактивной (плановой) и реактивной (срочной) деятельности по процессу; ·
  • синхронизация ремонтов с закупками запасных частей и комплектующих, а также с производством; ·
  • контроллинг существующих процессов ТОРО.

Для целей совершенствования в рамках процесса ТОРО можно выделить два основных контура управления — стратегический и тактический.

Уровень стратегического управления процессом ТОРО.
Фактически в рамках данных работ формируется концепция и основные правила процесса ТОРО, а также отслеживается его эффективность. Какие риски присущи бизнесу? Сколько аварий произошло в прошлом году? Каковы убытки в настоящее время? Сколько средств можно потратить на непрерывность бизнеса? Какое оборудование мы будем обслуживать проактивно? Какое оборудование для нас некритично? На практике вопросов еще больше, и ответы на них необходимо найти для оптимизации управления ТОРО. В тоже время на стратегическом уровне определяются допустимые границы затрат, которые в свою очередь являются ограничениями для построения логики и методологии процесса ТОРО. Производственный процесс в большинстве случаев серьезно влияет на процесс ТОРО, ведь если для ремонта нужна остановка оборудования, то необходимо сделать это в пик минимального спроса, чтобы у компании был резерв по мощностям. В дополнение ко всему закупки не должны давать опозданий по времени, иначе план ремонтов будет постоянно нарушаться, а среднее время устранения неисправности расти. Когда все стратегические вопросы решены, можно начинать совершенствование процесса ТОРО на тактическом уровне.

Тактический уровень процесса ТОРО
На этих шагах уже идет оперативная работа по обработке неисправностей и выполнению плана ремонтов, именно тут формируются сообщения об отказах, создаются заказы на работы, формируются заявки на закупку запасных частей, проводятся сами ремонтные работы. На тактическом уровне становится важна логика обработки потока работ, а также учет всей необходимой информации по оборудованию и персоналу, поэтому на практике, автоматизация процесса ТОРО начинается именно с этого уровня.

Автоматизация процесса ТОРО

Использование специализированных ИТ- решений в процессе ТОРО позволяет сократить простои, снизить затраты на ремонты, а также повысить эффективность использования оборудования и персонала. Еще в 90-х годах аналитическая компания Gartner Group ввела термин EAM (Enterprise Asset Management — управление активами предприятия). Системы этого класса предназначены для автоматизации процесса ТОРО и отвечают за управление всем жизненным циклом оборудования, начиная с проектирования, изготовления, монтажа и сборки, а также, последующего обслуживания, сервисных и профилактических работ, модернизации, реконструкции и списания. Классическая EAM-система имеет следующую функциональность: ·

  • проектирование процессов технического обслуживания оборудования; ·
  • управление поставками оборудования; ·
  • управление монтажом оборудования; ·
  • предупредительное обслуживание (ремонт по состоянию); ·
  • контроль и управление ремонтным персоналом (квалификация, учет работ); ·
  • планирование и диспетчеризация нарядов на работы; ·
  • учет всех расходов на ремонтные работы; ·
  • управление складскими запасами; · и т.д.

При этом статистика внедрений ЕАМ- систем свидетельствует об их чрезвычайно высокой отдаче. На практике большинство проектов окупается менее чем за два года. При этом типовым результатом является сокращение затрат на ремонтные работы на 20%.
Согласно исследованиям консалтинговой группы A.T. Kearney, изученные случаи внедрения EAM-систем характеризовались получением, в среднем, следующих выгод: ·

  • Повышение производительности работ по ТОРО 29% ·
  • Повышение коэффициента готовности 17% ·
  • Сокращение складских запасов 21% ·
  • Уменьшение случаев нехватки запасов 29% ·
  • Увеличение доли плановых ремонтов 78% ·
  • Сокращение аварийных работ 31% ·
  • Сокращение сверхурочных работ 22% ·
  • Сокращение времени ожидания запчастей 29% ·
  • Сокращение срочных закупок ТМЦ 29% ·
  • Более выгодные цены на закупаемые ТМЦ 18%

Однако, несмотря на множество отчетов в информационной системе автоматизирующей процессы ТОРО, не всегда существующий функционал позволяет «увидеть» фактический процесс ТОРО. И именно для этого компанией IDS Scheer разработан специализированный инструментарий ARIS Process Performance Manager (ARIS PPM), который позволяет «восстановить» существующий процесс ТОРО, а также провести его всесторонний анализ для определения направлений дальнейшей оптимизации. Основное внимание в ARIS PPM уделяется анализу самого процесса ТОРО через временные, объемные и стоимостные показатели. Такой расширенный анализ позволяет анализировать как логику организации процесса, так и эффективность его участников на основании данных в EAM – системе.
Использование инструментария ARIS PPM для оптимизации процесса ТОРО позволяет получить следующие преимущества: ·

  • сокращение времени реакции на неисправность при реактивном управлении ремонтами; ·
  • соблюдение регламентных сроков планирования ремонтов; · повышение точности планирования ремонтов; ·
  • повышение организационной эффективности участников процесса; ·
  • снижение числа ошибок и излишних согласований при планировании ремонтов; ·
  • контроль своевременного исполнения плана ремонтов.

В качестве заключения, можно отметить, что в настоящее время большинство компаний уж начали автоматизацию ТОРО, однако большинство из них мало внимания уделяют оптимизации процессов ТОРО, надеясь на существующий в информационных системах функционал. Но, к сожалению, типовые информационные системы не могут подойти всем сразу, именно поэтому перед автоматизацией ТОРО нужно четко понимать существующие процессы и формулировать те улучшения, которые необходимо сделать. При этом если система уже внедрена, но понимания процессов и направлений их оптимизации нет, тогда необходимо «восстановить» фактический процесс ТОРО с использованием ARIS PPM, что в свою очередь даст серьезный аналитический материал для сокращения затрат в области ТОРО.

Андрей Константинович Коптелов, Директор проекта «Контроллинг 24», Компания IDS Scheer Россия и страны СНГ

СВАРКА. РЕНОВАЦИЯ. ТРИБОТЕХНИКА: тезисы докладов / Отв. ред. ; М-во образования и науки РФ; ФГАОУ ВПО “УрФУ им. первого Президента России Б.Н. Ельцина”, Нижнетагил. технол. ин-т (фил.). – Нижний Тагил: НТИ (филиал) УрФУ, 2013. – 76 с.

Во время ремонтных остановок выполняется ревизия механизмов и замена изношенных деталей новыми. Частота ремонтов может определяться частотой отказов оборудования – ремонты по отказу . Но они занимают много времени, так как к ним нет возможности подготовиться. В исправление этого разработаны планово-предупредительные ремонты (ППР), которые выполняются после определённой наработки. Такой подход сокращает время ремонтов, но допускает преждевременные ремонты, ибо износ не повторяется с большой точностью. С 90-х годов наличие неисправностей определяют вибродиагностикой работающего оборудования. Это исключает преждевременные ремонты, что нашло отражение в названии ремонтов – по фактическому состоянию (РФС). Дальнейшее сокращение ремонтов возможно увеличением послеремонтной наработки оборудования. Это достигается применением мер по замедлению износа; такие ремонты получили название проактивных (ПАР). Содержание проактивной части ремонтов:

  • оптимизация внешнего воздействия, в том числе снижение пиковой (от вибраций, ударов и прочего) его составляющей;
  • оптимизация смазки;
  • упрочнение рабочих поверхностей.

Оптимизация внешнего воздействия

Внешнее воздействие, вызывающее износ, определяется мощностью оборудования. Но снижение мощности влечёт падение производительности. Тем не менее, такой путь возможен, если годовая выработка оборудования, эксплуатирующегося с меньшей нагрузкой, за счёт малых ремонтных простоев окажется больше, чем в случае работы с большой нагрузкой и значительными ремонтными простоями и издержками.

Другой путь оптимизации внешнего воздействия заключается в уменьшении его разрушающего действия без снижения мощности, путём снижения концентрации напряжений . Например, корпус 12-метрового штампа для формовки труб большого диаметра после непродолжительной эксплуатации разломился надвое. Его ремонтная сварка без дополнительных мер по усилению представлялась не перспективной. Анализ напряжённого состояния конструкции показал, что уровень эквивалентных напряжений по линии излома резко снижается в результате изменения всего лишь на 7° угла расположения нижних рёбер жёсткости. Последующая эксплуатация модернизированного штампа подтвердила справедливость этого решения.

Пиковая составляющая нагрузки может появляться от неполадок. Твёрдая наплавка торцов тележек обжиговых машин не только снизила износ и частоту ремонтов самих тележек, но за счёт того, что одновременно устранился перекос тележек, снизились нагрузки на приводную звёздочку и вчетверо уменьшились замены её секторов.

Пиковые нагрузки создаёт вибрация. Вакууматор состоит из ёмкости с двумя патрубками. Через один расплав стали всасывается в вакууматор, а через другой – сливается обратно в ковш. Всасывающий патрубок при работе создавал вибрацию, которая разрушала огнеупорную футеровку. Скрепляющие элементы снизили вибрацию и вдвое увеличили стойкость вакууматора.

Оптимизация смазки

Смазка представляет собой прослойку, которая переводит внешнее (большое) трение поверхностей во внутреннее (небольшое) трение смазочного материала. Различают жидкостную смазку, когда трущиеся поверхности разделяет сплошной устойчивый слой смазочного вещества, и граничную смазку – с более тонким и прерывистым слоем масла. Жидкостная смазка обеспечивается особым устройством подшипников, а граничная – получается в результате свободного размещения на поверхностях трения смазочных веществ. В качестве последних исторически первыми применялись масла животного и растительного происхождения. В последней четверти XIX века началось производство более дешёвых минеральных масел из нефти. Их свойства оказались не так хороши, поэтому шёл длительный процесс улучшения их присадками. К середине XX века относится появление синтетических масел. Имея низкую вязкость, мало зависящую от температуры, и химическую стабильность, они обеспечивают лучшие смазочные свойства, благодаря чему достигается снижение трения и износа по сравнению с нефтяными маслами.

В 30-х годах XX века стал известен эффект Ребиндера . Он показал, что трение способен снижать чрезвычайно тонкий (5 нм) слой поверхностно-активных веществ (ПАВ), который можно назвать “невидимой смазкой”. Для нанесения ПАВ на поверхность на Западе был разработан раствор, названный “Эпилам”. В дальнейшем новые растворы ПАВ по аналогии продолжали именовать эпиламами, присваивая каждому оригинальное название (марку). В 60-х годах в НИИЧаспроме был разработан эпилам ЭН-3 – раствор стеариновой кислоты в изооктане. Затем появились и совершенствуются эпиламы на основе фторированного ПАВ. Например, 0,05% раствор перфторполиэфирной кислоты 6МКФ-180 в Хладоне 113 (эпилам Эфрен-2). Эпиламовая “невидимая смазка” не отменяет применения обычной смазки, но повышает её эффективность (снижая трение и износ), за счёт исключения контакта трущихся поверхностей несмазанными участками. Эпиламирование предусматривает предварительное обезжиривание поверхности, смачивание её эпиламом и сушку на воздухе, что вполне доступно к применению в ремонтах.

В 60-х годах в СССР было зарегистрировано научное открытие №41 – “эффект безызносности”. Его суть в том, что из смазки, содержащей мелкодисперсные частицы, на поверхностях трения осаждается их тонкий слой. За ним признаётся способность изнашивания и восстановления по мере увеличения зазора между поверхностями трения. Таким образом, несмотря на трение и изнашивание, первичные поверхности деталей, будучи защищёнными осажденным слоем, остаются без износа. Отсюда происхождение названия “эффект безызносности”. Для его достижения в масла добавляют дисперсные порошки мягких (медь, серпентинит, фторопласт) и твёрдых (керамика, алмаз) материалов. Наиболее устойчивые представления о них следующие. Медные добавки плохо удерживаются на поверхности, поэтому требуется их постоянное присутствие в смазке. Серпентинит обладает способностью к диффузии с созданием прочного слоя с низким коэффициентом трения. Твёрдые частицы алмаза и керамики, заполняя микронеровности, создают некоторое подобие подшипника качения. Добавками к маслам достигается восстановление износа без разборки механизмов и снижение трения .

Оптимизация выбора смазочных материалов может дополняться совершенствованием систем доставки их к узлам трения. Этим без капитальных вложений продлевается межремонтная наработка оборудования.

Упрочнение рабочих поверхностей

Для всех сочетаний пар трения существует некоторый диапазон нагрузок и скоростей трения, в котором износ на несколько порядков ниже, чем вне этого диапазона. В машиностроении идёт непрерывный поиск путей перемещения указанного диапазона в области более высоких значений давлений и скоростей. При этом важную роль играет упрочнение. В третьей четверти XX века широкое его применение (закалка ТВЧ, цементация, азотирование, наплавка, напыление и прочее) позволило существенно замедлить износ и увеличить (до микронного уровня) точность изготовления деталей. Без упрочнения повышение точности не имеет смысла, ибо в этом случае дорогостоящие микронные сопряжения из-за быстрого износа превращаются в рядовые уже в начале эксплуатации. Благодаря микронной подгонке деталей, минимизированы зазоры, снижен шум, динамические нагрузки, вибрация, появилась возможность работы с минимальным изнашиванием на больших скоростях. В механизмах убрали регулировочные элементы, служащие для выборки зазоров при быстром изнашивании, что также положительно отразилось на надёжности машин и оборудования. Машины нового поколения столь существенно увеличили наработку, что их называли “безремонтными”.

Охват упрочнением функциональных поверхностей машин ещё не оптимален, поэтому работы по упрочнению во время ремонтов вполне оправданы. Обратим внимание на карбонитрацию и ручную плазменную закалку. Они разработаны не так давно, но имеют перспективы для применения, именно при ремонтах, так как относятся к категории финишных.

Карбонитрация – разработана в СССР в 70-х годах и представляет собой насыщение поверхности азотом и углеродом в расплаве соли цианата калия. Свойства карбонитрированного слоя подобны свойствам слоя, полученного азотированием. На поверхности имеется тонкий слой (около 5 мкм) твёрдого карбонитрида, под которым располагается насыщенный азотом слой (0,2 мм) с постепенно убывающей твёрдостью. Отличие в том, что азотированием упрочняются только легированные стали, а карбонитрация способна упрочнять обычные углеродистые стали ().

Таблица 1 – Твёрдость карбонитрированных поверхностей (измерения выполнены ультразвуковым твердомером УЗИТ-3)
Сталь Ст.3 40 40Х У8 65Г ХВГ Х12М 20Х16МГСФР
HRC 35 45 52 56 59 63 64 68

Карбонитрация не требует такой тщательной предварительной очистки как азотирование и выполняется гораздо быстрее (2 ч вместо 48 ч), чем азотирование. Детали машин могут изготавливаться по чертёжным размерам и сразу после карбонитрации направляться в эксплуатацию. При этом снижается трудоёмкость изготовления, приобретается износо- и коррозионная стойкость. Например, применение карбонитрации вместо закалки ТВЧ снизило расход ведущих валов-шестерней редуктора бурового станка СБШ-250 в 6 раз.

Современный уровень развития технологий горнодобывающих и горноперерабатывающих предприятий предъявляет высокие требования к надежности оборудования, а также эффективной и экономичной его работы. Надежность оборудования базируется на обязательном применении новейших средств, методов контроля и наладки горно-шахтного оборудования (ГШО) и требует комплексного подхода к решению инженерно-технических проблем.

Работоспособность ГШО (т.е. способность удовлетворять заданным техническим характеристикам в течение определенного момента времени) и восстановление его основных характеристик обеспечивается на предприятиях установленной системой технического обслуживания и ремонта (ТОиР).

Согласно ГОСТ 28.001-83 целью системы ТОиР является управление техническим состоянием изделий в течении всего срока их службы (или ресурса до списания), позволяющее обеспечить заданный высокий уровень их готовности к использованию по назначению и работоспособности в процессе эксплуатации при минимальных затратах как времени, так и средств на выполнение технического обслуживания и ремонта изделий.

Усилия системы ТОиР должны быть направлены на повышение коэффициента использования оборудования, который согласно ГОСТ 13377-75 описывается следующим уравнением:

(1.1)

где t сум – наработка в часах; t п и t то - время всех простоев, вызванное необходимостью ремонта и технического обслуживания объекта.

Логично предположить, что для того чтобы повысить K T следует увеличить наработку и уменьшить время простоев оборудования, как в ремонте, так и при техническом обслуживании. В тоже время качество проведенного технического обслуживания может уменьшить количество ремонтов, и соответственно качество проведенного ремонта влияет на продолжительность межремонтного интервала.

Обеспечение успешной работы ГШО в течение длительного периода времени требует аккуратного выбора конструкции оборудования, правильной установки, бережной эксплуатации, возможности диагностирования (наблюдения) за изменениями характеристик через определенное время, и в случае отказа, способностью полностью исследовать причину отказа и принять меры, чтобы предотвратить повторение проблемы. ГШО, которое правильно установлено, динамически сбалансировано, находится на регламентированном фундаменте с допустимой соосностью, обеспечено качественной смазкой, запускается, эксплуатируется и останавливается с требованиями ТУ, а также если эксплуатационный персонал наблюдает за отклонениями параметрических значений, обычно никогда не испытывает аварийных отказов.

Во время проведения выездного обслуживания специалисты технического сервиса компании «Балтех» не раз сталкивались с ситуацией, что часто горно-шахтное оборудование эксплуатируется не в расчетном режиме, с менее эффективным кпд, или установлено на неустойчивых опорных плитах, или работает в условиях не допустимой расцентровки валов, или, будучи смазанное на ремонтном заводе, больше не смазывается, пока не заклинит подшипники, и как следствие, по результатам вибрационного анализа очень частый дефект «ослабление опор». Согласно концепции «Надежное оборудование» (разработчик компания «Балтех», г.Санкт-Петербург) при эксплуатационных и сервисных (ремонтных) работах ГШО должен соблюдаться принцип международных систем качества P-D-C-A «ПЛАНИРУЙ-ДЕЛАЙ-ПРОВЕРЯЙ-АНАЛИЗИРУЙ». Согласно данной концепции всегда необходимо найти и проанализировать причину отказа, принять необходимые меры не только по ее локализации с помощью средств функциональной и тестовой диагностики, но и спланировать превентивные мероприятия (указ на слабые технические стороны разработчику или технологии ремонта собственного подразделения), чтобы в следующие периоды эксплуатации ГШО эта «болезнь» не повторилась. Таким образом коэффициент надежности оборудования может не только поддерживаться на уровне заложенном при проектировании разработчиком (производителем), но и повышаться за время эксплуатации машин и механизмов, что приводит к повышению эксплуатационной рентабельности. В учебном центре «Балтех» под каждый вид оборудования разработаны отдельные концептуальные программы начиная с расчета экономической целесообразности внедрения методов параметрической диагностики, подбора функциональных приборов и диагностических систем, и заканчивая поставкой с обучением на предприятии данной отрасли. Мировой опыт показывает, что существует всего несколько форм технического обслуживания. В каждой отрасли процентное соотношение отличается в зависимости от специфики и технологий.

Пять подходов к обслуживанию ГШО

Если Вы достаточно долго работаете в промышленности, то, возможно, наблюдали все различные формы технического обслуживания. Способы работы обслуживающих или ремонтных подразделенй, обычно относятся к пяти различным категориям:

  1. Реактивное (реагирующее) профилактическое обслуживание (РПО);
  2. Обслуживание по регламенту или планово-профилактическое обслуживание (ППР);
  3. Обслуживание по фактическому техническому состоянию (ОФС);
  4. Проактивное или предотвращающее обслуживание (ПАО);
  5. Концепция «НадО:2010» (комбинированная концепция надежности оборудования)
ФОРМА ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ХАРАКТЕРНЫЕ ОСОБЕННОСТИ
Реактивное обслуживание
(затраты 750руб на 1КВт в год)
Ремонт или замена оборудования только в случае выхода из строя, либо полной выработки ресурса
Планово-профилактическое обслуживание
(затраты 600руб на 1КВт в год)
Планово-периодическое проведение профилактических работ, составление и соблюдение календарного графика
Обслуживание по фактическому состоянию (ОФС)
(затраты 360руб на 1КВт в год)
Обслуживание только дефектного оборудования в сочетании с профилактикой внеплановых остановов
Проактивное обслуживание
(затраты 240руб на 1КВт в год)
Продление межремонтного интервала и интервала между обследованиями

Концепция «НадО :2010»

КОМБИНИРОВАННАЯ КОНЦЕПЦИЯ

Принципиальное значение конечной стоимости затрат на производство работ связанных ТОиР связано с выбором формы организации ситемы ТОиР.

  • Реактивное (реагирующее) профилактическое обслуживание (РПО).

Форма технического обслуживания при которой ремонт и/или замена узла (агрегата, машины и т.д.) производится только после выхода его из строя (отказа), либо полной выработки ресурса. Данная форма технического обслуживания может быть применима только для дешевого вспомогательного оборудования при наличии его резервирования. Иногда эту форму называют «агрегатированием», т.к. меняется полностью агрегат (например насос экскаватора ЭКГ-10, или привод-электродвигатель).

Достоинством данного метода является то, что до наступления отказа оборудования не требуется вложения средств на саму систему ТОиР, недостатком – что эта «мнимая» экономия может привести к колоссальному по времени внеплановому простою оборудования вследствие его внезапного отказа и чрезмерно высокой стоимости непосредственно самого ремонта, тем более возможности ремонтного подразделения ограничены.

  • Обслуживание по регламенту (ППР).

Цель проведения обслуживания по регламенту или, по-другому, планово-предупредительных работ (ППР), в исключении числа отказов оборудования путем проведения периодического профилактического технического обслуживания и плановых ремонтов.

В основе этой стратегии заложен следующий принцип: используя статистические данные истории отказов аналогичного оборудования и принципов развития определенных процессов износа отдельных его узлов в зависимости от фактической наработки, устанавливают такой срок эксплуатации оборудования, при котором вероятность безотказной работы будет достаточно высокой (например, 98%), подразумевая малую вероятность интенсивного износа и отказа оборудования. Этот срок называют межремонтным интервалом и жестко привязывают к календарному план-графику производства, с таким расчетом, чтобы проводить необходимые ППР без ущерба технологическому процессу самого производства. Считается, что дефектация определенного узла машины с целью определения необходимости его ремонта либо замены по окончании фиксированного межремонтного интервала, существенно снижает вероятность его отказа.

Однако на практике эти принципы не всегда работают. В реальных условиях строгая линейная зависимость между наработкой на отказ или сроком эксплуатации и техническим состоянием механизма существует только при наличии исключительно либо химической коррозии, либо механической эрозии и износа, либо усталостного износа.

Остаточный ресурс механизма не должен определятся только временем его эксплуатации. Бесспорно, что время эксплуатации оказывает влияние на техническое состояние механизма, но время не единственный фактор, определяющий его остаточный ресурс, а часто даже малозначительный. Каждый механизм состоит из целой гаммы допусков: проектно-конструкторских, производственно-технологических, допусков на комплектацию, допусков на пуско-наладочные, эксплуатационные и ремонтно-профилактические работы, которые также выполняются специалистами разных квалификаций. Как следствие, на практике не существует двух совершенно одинаковых механизмов и не может быть абсолютно одинаковых процессов их эксплуатации. Наиболее значимыми факторами (вопросами), оказывающие влияние на эксплуатационные характеристики промышленного оборудования являются:

  • где, когда и как оборудование было изготовлено?
  • при каких условиях оборудование хранилось?
  • как оно транспортировалось?
  • как осуществлялся его монтаж?
  • при каких условиях оно эксплуатировалось?
  • какова была квалификация и техническое оснащение обслуживающего персонала?
  • каково было содержание и качество последовательно произведенных ремонтов?, и т.д.;

Важно всегда помнить и о том, что остаточный ресурс любого исправного механизма не обоснованно подвергшегося вмешательству сокращается по причине нарушения качества кинематических взаимосвязей в его узлах, достигнутое естественной приработкой сопрягаемых узлов и деталей в процессе эксплуатации. Это есть самый существенный недостаток системы ППР. Чем более высокотехнологичен механизм, тем больший урон ему наносят необоснованные ревизии.

Несмотря на все вышесказанное, система ППР остается наиболее популярной среди предприятий горнодобывающей промышленности. Причины этому различны:

  • Практический опыт использования системы ППР показал значительное снижение эксплуатационных затрат по сравнению с системой РПО (по разным источникам от 15 до 40%).
  • Система ППР хорошо развита, отработана, имеет хорошую методологическую основу и позволяет поддерживать заданный уровень исправности и работоспособности оборудования.
  • Отсутствие четкого представления у руководителей предприятий о более прогрессивных системах ТОиР, усугубленная нехваткой квалифицированного персонала ремонтных служб и технического аппаратно-инструментального обеспечения для производства работ по фактическому техническому состоянию оборудования.

Однако самой важной причиной является то, что система ППР устраивает как изготовителя оборудования, так и персонал эксплуатирующей его организации.

Изготовитель (дистрибьютор), представляющий гарантию на произведенное (поставленное) им оборудование, предоставляет пакет инструкций обязывающий производить регламентированный ППР в зависимости от его наработки, тем самым страхуясь, в том числе, и от своих ошибок, что дает ему возможность отказать в гарантии, если оборудование не было подвергнуто требуемому техническому обслуживанию.

Изготовитель также имеет право отказать в гарантии, если усомниться в качестве произведенных работ. Несмотря на то, что в руководящих документах (РД) прописан перечень необходимых работ по поддержанию исправности оборудования, у предприятия-эксплуатационщика может не быть специалиста требуемой квалификации, опыта и требуемого инструмента для их проведения.

Более того, изготовитель ГШО, являясь прекрасно осведомленным о характере его эксплуатации, зачастую требует настолько идеальных условий, выполнение которых на практике весьма затруднительно или практически невозможно, невыполнение которых обязывает эксплуатационщика проводить все новый и новый ряд профилактических работ.

У ремонтного подразделения несколько иной принцип: «мы сделали то, что предписано», можно еще добавить «как смогли, и чем смогли». Очень часто никаких претензий к ним не должно, так как они действительно производят ремонт современного оборудования по ремонтной технологии отстающей на много лет. Технические аудиты компании «Балтех», проведенные на предприятиях в различных регионах России и СНГ за последние два года показали, что приборная и инструментальная база улучшается, иногда необдуманно и даже с избытком, но проблема обученных кадров и качественной технологии ремонта нет. Сервисные организации пока осуществляют в большинстве случаев только поставку запасных частей, а на импортное оборудование с большой задержкой.

К тому же система ППР весьма затратная форма технического обслуживания, так как в большинстве случаев стимулируется сдельной системой оплаты труда по принципу «больше ремонта – больше оплата». Следовательно, как непосредственные исполнители, так и их руководители заинтересованы в большем объеме ремонтных работ, что существенно затрудняет интеграцию новых подходов к системе ТОиР.

С приходом рыночной экономики и появлением собственников ситуация начинает меняться. Взвесив все «за» и «против» руководители предприятий начинают искать пути снижения эксплуатационных затрат, понимая что величина этих затрат должна быть обоснована и технически, и экономически.

  • Обслуживание по фактическому состоянию (ОФС).

В 90-х гг. прошлого столетия произошел качественный скачок в развитии микропроцессорной техники, позволивший создавать аппаратные средства и программы позволяющие производить не только мониторинг технического состояния оборудования, но и осуществлять диагностику и прогнозировать тенденции его изменения. Это позволило создать качественно новую систему ТОиР – систему обслуживания по фактическому техническому состоянию.

Основная идея системы ТОиР по ОФС состоит в том, что техническое обслуживание базируется не только на зависимости сколько механизм проработал, но и с учетом его реального технического состояния, другими словами ремонту подвергаются только те узлы, которые в действительности требуют оперативного вмешательства.

Естественно возникает множество вопросов, первый из которых: «Какие параметры ГШО должны контролироваться и по каким критериям выводить в ремонт оборудование?».

Требования к контролируемым параметрам

При ревизиях механизмов определяются так называемые первичные параметры их состояния: дефекты кинематических узлов, рабочих органов, креплений и т.д. Оценка состояния проводится визуально или с использованием каких-либо инструментальных (диагностических) средств и представляется, в целом, достаточно надежной. Хотя, как уже говорилось выше, далеко не все даже важные для технического состояния механизма первичные параметры (например, динамический дисбаланс ротора, расцентровка) могут быть определены методом ревизии.

При стратегии ОФС, которая предполагает оценку технического состояния механизма без ревизии, на эксплуатационных режимах, речь, естественно, идет о контроле по вторичным параметрам и поэтому вполне логично, что эти параметры должны удовлетворять определённым требованиям. Требования к ним должны быть сформулированы следующим образом:

  1. контролируемые параметры должны иметь однозначную количественную взаимосвязь с первичными параметрами технического состояния;
  2. измерение параметров должно обеспечиваться по возможности простыми, портативными или стационарными техническими средствами, не требующими специальной квалификации персонала;
  3. технические средства должны быть метрологически аттестованы согласно ГОСТам и методикам;
  4. диапазон изменения контролируемых параметров в процессе работы механизма от состояния “отлично” до состояния “недопустимо” должен быть достаточно большим (параметр должен меняться не менее, чем в 5-10 раз согласно стандарту IORS:2010) для своевременного выявления зарождающихся дефектов и достоверного прогнозирования остаточного ресурса механизма;
  5. стоимость выполнения работ по контролю вторичных параметров и время их выполнения должны быть существенно ниже, чем при ревизии механизмов;
  6. достоверность контроля по вторичным параметрам должна быть не ниже 80 %;
  7. параметры контроля должны быть по возможности универсальны для диагностики одинаковых дефектов однотипного оборудования или его узлов.

Изложенный перечень не является исчерпывающим и может дополняться другими требованиями в зависимости от конкретных особенностей ГШО и тех дефектов, которые в нём могут появляться, но применение требований перечисленных выше, на наш взгляд, является обязательным.

Основы технологии ОФС

Коренное отличие технологии ОФС от ППР состоит в том, что ППР основывается только на времени эксплуатации ГШО, а ОФС учитывает всю совокупность факторов, определяющих его эксплуатационный ресурс. Причём происходит это автоматически, поскольку какие бы факторы и в какой комбинации в каждом конкретном случае не воздействовали на ГШО, мы наблюдаем совокупную реакцию на эти воздействия по изменению выбранных критериев и параметров. А они, как уже говорилось выше, в силу своей высокой информативности и чувствительности обязательно отразят происходящие с оборудованием перемены. В последующем, если это необходимо, соответствующей обработкой и анализом параметров всегда можно определиться и с реальной причиной, вызывающей данные изменения: дефекты его изготовления, или монтажа, или наладки, или это процессы естественного износа узлов и деталей. При этом появляется возможность не только контролировать состояние ГШО, но и определять реальные причины происходящих изменений в каждой конкретной ситуации, а, значит и принимать вполне обоснованные решения по их устранению в дальнейшем. Это существенное достоинство технологии ОФС.

Ещё одним преимуществом технологии ОФС является то, что используемые при этом технические средства, как правило, позволяют не только производить измерения и контролировать состояние оборудования, но и обеспечивают решение задач по оперативной наладке механизмов в процессе эксплуатации. В первую очередь это касается центровки, динамической балансировки роторов, лазерной выверки геометрии ГШО. Таким образом, при технологии ОФС существенно изменяется сам цикл работ при эксплуатации оборудования. При технологии ППР эксплуатационный цикл (рис. 1), представляет собой непрерывное чередование двух фаз: РАБОТА/ТО или РЕМОНТ, при этом в любой момент цикла может вклиниться поломка механизма со всеми вытекающими последствиями.


Рис. 1 Технология обслуживания «по регламенту»

При технологии ОФС (рис.2), в составе цикла появляются совершенно новые фазы, коренным образом изменяющие саму идеологию эксплуатации ГШО.


Рис. 2 Технология обслуживания «по состоянию»

Основой такого вида ТО является техническое диагностирование (ТД) и прогнозирование состояния ГШО. С помощью средств ТД проводят непрерывный или периодический контроль параметров состояния. Прогнозирование выполняют при непрерывном контроле для определения времени, в течение которого сохранится работоспособное состояние, а при периодическом контроле – для определения момента времени следующего контроля.

Результаты диагностирования и контроля – основа для принятия решений о необходимости ТО, времени его проведения и объеме, а также о времени проведения очередного контроля технического состояния.

Схема взаимодействия показана на рисунке:

Реализация ТО по состоянию связана с затратами на диагностирование и прогнозирование, поэтому применять такой вид ТО целесообразно, когда экономические затраты не являются определяющими (оборудование первой группы надежности) или когда этот метод экономически более выгоден. Одним из условий применения метода является также преобладание у данного вида оборудования постепенных и предупреждаемых отказов над внезапными.

Необходимые условия применения ОФС:

  • экономическая целесообразность;
  • наличие диагностической (приборной и инструментальной) базы;
  • методики определения ТС и его прогнозирования;
  • наличие соответствующего программного обеспечения;
  • квалифицированный (обученный) персонал;
  • контролепригодность оборудования;

В практике контроля технического состояния ГШО применяют следующие системы технической диагностики и неразрушающего контроля (ТД и НК):

  • Измерение ударных импульсов подшипниковых узлов;
  • Центровка с помощью электронно-механических (дешевых) или лазерных систем (дорогих);
  • Измерение вибрации (общего уровня, спектрального анализа) роторных машин;
  • Измерение температуры – контактное и бесконтактное (пирометрическое);
  • Визуальный контроль (эндоскопическое обследование);
  • Определение состояния масел и смазок (вязкость, содержание воды и механических примесей);
  • Дефектоскопия и толщинометрия стенок сосудов, труб и корпусных конструкций;
  • Измерение сопротивления изоляции кабелей и обмоток электрических машин, трансформаторов;
  • Анализ состава газов и многое другое;
  • Ключевым вопросом эффективности применения ТО по состоянию является задача выбора стратегии диагностирования и назначении допустимых уровней и параметров. Существуют несколько вариантов стратегии, зависящие от особенностей поведения параметров оборудования, возможности прогнозирования и применяемых систем ТД и НК.

    Важным элементом системы ТО по состоянию является служба технической диагностики или надежности оборудования (НадО:2010). В ее задачи входит выполнение плановых обследований оборудования, заявок на внеплановое диагностирование, участие в приемке оборудования из ремонта (выходной контроль), а также выдача рекомендаций по предотвращению дальнейших отказов по результатам проведенного анализа. Необходимо обеспечить достаточный статус службы, весомость ее рекомендаций для всех технических руководителей данного предприятия. Сотрудники службы должны быть обучены применению средствам диагностики и выявлению достоверных результатов по международному стандарту IORS:2010 (Надежные стандарты, надежность организации).

    Прогнозирование технического состояния (ТС) является наиболее эффективным методом повышения эксплуатационной надежности ГШО путем своевременного проведения мероприятий по ТОиР. Прогнозирование позволяет предупреждать как постепенные отказы, так и внезапные. Обычно в практических применениях прогнозирования ТС некоторого объекта выполняют одновременно два прогноза. На короткий интервал времени в оперативных целях планирования использования по назначению, до нескольких дней, а также на интервал от недели до нескольких месяцев с целью планирования технического обслуживания и ремонта.

    Прогнозирование представляет собой процесс определения технического состояния объекта на предстоящий интервал времени и оно основано на применении методов экстраполяции явлений на будущее время по известным результатам наблюдений ТС ГШО за предыдущий период.

    Прогнозируемыми параметрами могут быть:

    • эксплуатационные параметры, измеряемые штатными приборами автоматической системы управления технологическим процессом (АСУ ТП), при этом применяется функциональная диагностика без вывода оборудования из эксплуатации;
    • параметры технического состояния, измеряемые переносными приборами с остановкой оборудования и/или частичной разборкой ГШО.

    В зависимости от используемого математического аппарата различают следующие основные направления прогнозирования:

    • экспертные оценки , когда мнения экспертов о будущем состоянии оборудования собирают путем опроса или анкетирования, обрабатывают и получают прогноз.
    • аналитическое , когда в результате прогнозирования определяется величина контролируемого параметра (параметров), характеризующего ТС ГШО во времени;
    • вероятностное , когда в результате прогнозирования определяется вероятность выхода (невыхода) параметра (параметров) ТС за допустимые пределы;
    • статистическая классификация (распознавание образов), когда в результате прогнозирования определяется класс диагностируемого объекта по критерию работоспособности.

    На практике исходными данными для проведения прогнозирования по любому из методов является история измерения параметров во времени. Если интервалы между измерениями равны, то такой ряд измерений называют временным. Некоторые методы прогнозирования требуют, чтобы ряд был именно временным – без пропусков значений с одинаковыми интервалами времени.

    Большинство факторов, влияющих на надежность ГШО, являются случайными, поэтому многие параметры надежности носят вероятностный характер и для их определения используется математический аппарат теории вероятностей и математической статистики.

    Выполняемые работы:

    • Сбор данных по имеющейся инфраструктуре средств ТД и НК, состоянии нормативной базы, производственной культуры предприятия;
    • Анализ экономической целесообразности применения метода для групп оборудования А, В;
    • Рекомендации по выбору параметров ТОиР по состоянию:
      1. Номенклатура обследуемого оборудования;
      2. Периодичность контроля;
    • Организационное обеспечение, создание или реорганизация службы НадО:2010;
    • Выбор средств ТД и НК, методов прогнозирования технического состояния ГШО;
    • Реализация технологии ТО по состоянию с применением средств ТД и НК в АСУ;
    • Анализ результатов применения рекомендаций, корректировка (6-12 месяцев).

    Параллельно с работой ГШО с определенной периодичностью (обычно достаточно это сделать 1 раз в месяц) осуществляется контроль текущего технического состояния механизма по измерению соответствующих параметров. Анализ этих параметров во времени позволяет отслеживать реальную динамику происходящих изменений и обоснованно прогнозировать сроки и содержание наладочных работ, ТО и ремонтов. Введение операций контроля и, при необходимости, наладки, позволяет существенно улучшать качественное состояние механизмов после прохождения ремонта.

    При этом необходимо понимать, что проведение любого, даже капитального ремонта ГШО, ни в коей мере не гарантирует, что все проблемы решены и его можно смело эксплуатировать без всяких ограничений. Только послеремонтный (выходной) контроль даёт объективную картину о действительном состоянии механизма. После ремонта виброактивность механизма может действительно существенно снизиться, но также может не измениться или даже возрасти. Специалистами компании «Балтех» были выработаны практические критерии по выходному контролю. Было выявлено, что если вибрация по результатом спектрального анализа в течение 48 часов после ремонта ГШО не увеличилась более чем на 2 дБ или понизилась относительно первого контурного обследования, то оборудование пройдет нормальный период приработки и будет долго работать. Естественно, что причина может быть в качестве ремонта (дефектные узлы, плохой монтаж и т. д.), но очень часто такое происходит и тогда, когда никаких претензий по ремонту нет. И в этом нет ничего мистического или необъяснимого. Дело в том, что любой механизм, например небольшой насос, на самом деле в динамике (т.е. при работе) представляет собой сложную колебательную систему, поведение которой зависит от множества факторов (например, гидродинамики). Поэтому послеремонтный (выходной) контроль и, при необходимости, наладка, являются важнейшей фазой технологии ОФС, гарантирующей продление эксплуатационного ресурса оборудования.

    Ещё одно достоинство технологии ОФС состоит в том, что в настоящее время в большинстве случаев производители измерительной аппаратуры предлагают предприятиям горнодобывающей и горноперерабатывающей отрасли не только измерительные приборы, методики, но и соответствующее программное обеспечение по автоматизированному ведению компьютерных баз данных измерений, что существенно упрощает процедуру анализа, ведения баз данных и расширяет возможности пользователя по достоверному прогнозированию остаточного ресурса ГШО, сроков и объемов технического обслуживания и ремонта.

    Итак, в чём же основные достоинства технологии ОФС?

    Достоинства технологии ОФС

    Переход на технологию обслуживания ГШО «по состоянию» позволяет:

    • контролировать реальное текущее техническое состояние оборудования и качество их ремонта;
    • уменьшить финансовые и трудовые затраты при эксплуатации оборудования;
    • продлить межремонтный период и срок службы механизмов;
    • сократить потребность в запасных частях, материалах и оборудовании;
    • избавиться от «внезапных» поломок механизмов и остановок производства;
    • планировать сроки и содержание технического обслуживания и ремонта;
    • повысить общую культуру производства и квалификацию персонала.

    В заключение этой части статьи хотелось бы ещё раз предостеречь руководителей предприятий от догматизма как в отношении технологии ППР, так и в отношении технологии ОФС. Реально, на практике технология ОФС всегда представляет собой комплексную технологию, включающую в себя как элементы контроля, диагностики и наладки по вторичным параметрам, так и процедуры ревизий и обслуживания «по регламенту». Особенно важно понимание всех руководителей технических подразделений, что нельзя перейти на «модное» в последние годы ОФС за короткий срок без оснащенных и квалифицированных кадров, имеющих большой опыт работы по системе ППР.

    • Проактивное или предотвращающее обслуживание (ПАО)

    Эта форма технического обслуживания использует все методы прогнозирующего и профилактического обслуживания, оговоренные выше, совместно с анализом коренных причин отказа, чтобы не только обнаруживать и точно определять возникающие проблемы, но и гарантировать, что выполнена надлежащая установка и проведены наилучшие методы ремонта, включая потенциальное повышение надежности или изменение конструкции оборудования, чтобы избежать или устранить повторение проблемы (например, плазмонапыление шеек валов и отдельных деталей, использование гидрогаек, съемников и индукционных нагревателей подшипников). Проведенные исследования показали, что затраты при таком способе работы составляют приблизительно 240руб на 1КВт в год. Преимущества данного подхода в том, что он прекрасно работает, если персонал имеет достаточно знаний, навыков, и времени, чтобы выполнять все заданные действия. Как и в программе, основанной на прогнозирующем обслуживании (ОФС), ремонт оборудования может быть намечен поэтапно, но при этом дополнительные мероприятия должны быть сделаны, чтобы обеспечить усовершенствования для снижения или устранения повторного появления потенциальных проблем. Итак, ремонт ГШО может быть намечен постепенным способом, и это дает Вам некоторое время на выполнение мероприятий по закупке материалов, необходимых для ремонта, что уменьшает потребность в большом количестве запасных частей. Так как техническое обслуживание и ремонт выполняется только когда это необходимо, и проведены меры для полного исследования причин отказа, а затем определены способы повышения надежности машин на основании проведенного анализа причин, то может иметь место существенное увеличение экономической эффективности и производительности ГШО. В мировой практике технического обслуживания это самая распространенная форма ТОиР, к сожалению нам известны небольшая часть российских предприятий, работающих по данной концепции. В основном это предприятия с иностранным капиталом и системой управления.

    Этот метод требует очень хорошо подготовленные кадры в профилактических, прогнозирующих, и предотвращающих (проактивных) стилях обслуживания, или привлечения на эти работы высококвалифицированных подрядчиков (субподрядчиков), которые тесно работают с обслуживающим персоналом в стадии анализа коренных причин отказа, а затем оказывают помощь в ремонте и планируют (проектируют) изменения.

    Для проведения таких работ обязательно требуется наличие приборов и систем ТД и НК и должным образом обученный персонал. Если организация работает в стиле обслуживания по отказу (реагирующее) или планово-предупредителного ремонта, управление производства и обслуживания должно перестраиваться на новые стратегии, что может быть проблематично, если отдел технического обслуживания (НадО:2010) не оснащается необходимым оборудованием, не проводится практическое внутреннее и внешнее обучение персонала для понимания новых методов, не регламентируется время необходимое для сбора данных, или не разрешается остановка оборудования, когда проблема идентифицирована, не определены процессы и процедуры для проведения анализа отказов оборудования, а также не проводиться модификация отдельных узлов для увеличения надежности всей машины в целом.


    Рис.3 Соотношение использования различных форм ТО на передовом и типичном предприятии

    Система ТОиР ДОСТОИНСТВА НЕДОСТАТКИ
    РПО Не требует больших финансовых вложений на организацию и техническое оснащение службы ТОиР Высокая вероятность внеплановых простоев из-за внезапных отказов приводящая к дорогостоящим и продолжительным ремонтам.
    ППР Система хорошо развита, имеет отработанную методологическую основу и позволяет поддерживать заданный уровень исправности и работоспособности оборудования Базируется на статистических данных историй отказов аналогичного оборудования с заложенным коэффициентом надежности, следовательно, для обеспечения заданного уровня его работоспособности изначально планируется объем работ превышающий требуемый фактически. Статистическая наработка не исключает полностью вероятность внепланового отказа.
    ОФС Исключает вероятность аварийных отказов и связанных с ними внеплановых простоев оборудования.> Позволяет прогнозировать объемы технического обслуживания и производить ремонт исключительно дефектного оборудования Может быть осуществлена только посредством постепенного перехода от системы ППР и требует полного пересмотра организационной структуры. Требует первоначально больших финансовых вложений для подготовки специалистов и технического оснащения службы ТОиР.
    ПАО Максимальное увеличение межремонтного срока за счет подавления источников отказов. Используются самые прогрессивные технологии технического обслуживания, ремонта и восстановления оборудования. Требуется трудоемкий анализ всех отказов с целью выявления их источников. Очень гибкая организационная система, постоянно требующая оперативного решения и внедрения ряда мероприятий.

    Как показывает практика, не существует ни одного предприятия в чистом виде использующего только одну из представленных стратегий управления системой ТОиР. Более того, переход от системы ППР к системе ОФС сопряженный с перестроением всей структуры ТОиР, во многих случаях приводит к обратному эффекту – обратному «скатыванию» на ППР. Причина этого в несогласованности планирования действий отдельных подразделений предприятия, нехватке специально подготовленного персонала и слабом техническом оснащении ремонтных служб.

    Сам переход на передовые формы ТО (ОФС и ПАО) невозможен без постановки грамотной службы технической диагностики. Неверно также утверждение, что идея ОФС состоит в устранении отказов оборудования путем выявления имеющихся или развивающихся дефектов только по совокупности виброакустических характеристик. Системы ОФС и ПАО должны базироваться на обязательном использовании целого ряда методов технической диагностики и распознавания технических состояний, которые в сочетании позволяют определить весь спектр дефектов, возникающих в технологическом оборудовании предприятия. Концепция «Надежное оборудование» это концептуальный подход к постановке эффективной системы технического обслуживания и ремонта промышленного оборудования базирующийся на глубоком исследовании, как физических причин его аварийных отказов, так и выявлении пробелов в организационной структуре. Разработанный алгоритм решения проблемы повышения надежности оборудования позволяет гарантировать экономически эффективные результаты, связанные с корректным переходом на концептуальное обслуживание, подходящее данному предприятию.

    • Концепция «НадО:2010» (комбинированная концепция надежности оборудования).

    После проведенного анализа ТО понятно, что в зависимости от отрасли и специфики предприятия должны использовать в совокупности все формы ТО в разных пропорциях и только в этом случае будет достигнут максимальный экономический эффект. Ниже приведен практический пример первого этапа технического аудита, проведенного на одном из горно-обогатительных комбинатов на Северо-Западе России специалистами компании «Балтех».

    Не соблюдение правил и норм транспортиров- ки и хранения продукции на складе 22% - несоответствие требованиям хранения
    складских помещений
    - переконсервация продукции
    хранящейся на складе Эксплуатация с нарушением требований ТУ 19% - по нагрузке (вибрации)
    - по температуре
    - по параметрам смазки
    - прочие параметры Некачественное текущее обслуживание и ремонт оборудования 36% - нет постановки задач надежности
    - несоосность
    - остаточный дисбаланс
    - проведение ремонтов
    без съемников и нагревателей Дефекты при монтажно-демонтажных работах 44% - подшипниковых узлов
    - узлов крепления и фундаментов Естественный износ 5% - деградация материалов Дефекты собственного изготовления з/ч 9% - входной/выходной контроль Низкая квалификация персонала 37% - нехватка технических специалистов Низкая культура производства 72% - социально-производственные
    факторы Не применяется триада надежности 90% -измерение уровня надежности ремонта
    -глубокий анализ причин аварий,
    -мероприятия повышения надежности
    КОНЦЕПЦИЯ «НАДЕЖНОЕ ОБОРУДОВАНИЕ»
    Основные причины выхода из строя оборудования
    Закупка неликвидной продукции 43% - оборудования
    - подшипников
    - инструмента
    - смазки и пр.

    За 100% взято 100 единиц динамического оборудования. После аудита было выявлено, что даже новое оборудование, установленное силами РМЗ имеет пониженный начальный коэффициент надежности из-за неправильного проектного технического задания, неправильной транспортировки, плохих и продолжительных условий складского хранения и низкого уровня монтажных работ вентиляционных агрегатов на несоответствующий нормам СНиП фундамент.

    Основные этапы концепции

    Данная концепция состоит из 6 основных этапов. Каждый из перечисленных ниже этапов основан на решении задач предыдущего уровня с целью наиболее полной его проработки.

    Этап 1. Выявление проблемы

    Определение проблемы повышения надежности оборудования является основополагающим этапом ее решения. Глубина подхода на данном этапе определяет экономический эффект от внедрения настоящей программы.

    Индивидуальный подход к решению проблемы определяется набором инструментов, используемого для ее выявления и исследуемых ключевых моментов.

    В качестве инструментов может быть использована комплексная оценка положения проведенная подготовленными техническими аудиторами собственной группы надежности (отдел ТД и НК), либо оценка, проведенная специалистами компании «Балтех».

    В качестве исследуемых ключевых моментов может быть произведен профессиональный аудит:

    • общего технического состояния оборудования;
    • анализ повторяющихся отказов/сбоев работоспособности оборудования;
    • уровня технологии средств используемого для технического обслуживания оборудования;
    • уровня квалификации штатного персонала или уровень подрядной организации;
    • вида используемого на предприятии технического обслуживания
    • особых моментов используемого вида технического обслуживания;
    • уровня общей эффективности предприятия, включая производительность оборудования, затраты на закупку запчастей и техническое обслуживание;
    • общего уровня производственной культуры и наличие системы качества;
    • система закупки, транспортировки и складского хранения оборудования и др.

    Этап 2. Разбиение проблемы на составляющие

    После выявления степени и величины суммарной проблемы повышения надежности оборудования следует произвести разбивку на ее составляющие. Определение составляющих общей проблемы проводится по каждому из исследуемых ключевых моментов.

    Результатом данного этапа должно быть выявление слабых мест структуры предприятия в целом (например документирование и паспортизация).

    Этап 3. Определение стратегии и план решения проблемы

    Стратегия решения проблемы повышения надежности оборудования определяет степень и уровень локализации опасных моментов. Она может быть частичная (удаление только наиболее проблемных аспектов), либо полная (комплексная).

    Важно определить что подлежит корректировке: причина или следствие проблемы и/или что устранять в первую очередь.

    Стратегия и план решения проблемы определяется предприятием на основе предложения аудиторов отдела ТД и НК.

    Этап 4. Выбор надежных средств технических решений и разработка программы повышения квалификации специалистов

    Выбор средств технических решений определяется целесообразностью их использования на основе расчета экономического эффекта от их внедрения. При расчете необходимо руководствоваться выбранными критериями и требованиями к уровню надежности 1R, 2R или 3R. Выбор средств технических решений определяется предприятием на основе предложений опытных технических специалистов данного предприятия и концепции, разработанной группой технических аудиторов. Разработка внутреннего стандарта надежности и сертификация по стандарту IORS:2010 должны проходить (рекомендация) на основе процесного подхода 3R (ответственные и полномочия, политика надежности и ресурсы, и др.).

    Этап 5. Комплексное решение проблемы

    На основе 3 и 4 этапов программы формируется комплексное решение проблемы повышения надежности оборудования. Если предприятие сертифицировано по системе менеджмента качества, то менеджерам отвечающим за качество продукции необходимо сделать коррекцию во внутреннем руководстве по качеству с учетом требований технического подразделения (например: отдела главного механика или главного энергетика).

    Внедрение комплексного решения или сертификация по стандарту IORS:2010 происходит при помощи аттестованных по IORS:2010 внутренних или внешних аудиторов.

    Этап 6. Контроль результатов внедрения программы

    Процесс оценки уровня надежности оборудования, корректировка и внедрение улучшений должно происходить с утвержденной периодичностью не зависимо от достижения поставленного уровня надежности.

    Удовлетворенность потребителя (внутренний потребитель оборудования – это технологи) от внедрения программы должно иметь самую важную роль, именно поэтому очень важен контроль, анализ и улучшение результатов по повышению надежности оборудования.

    Вся концепция должна внедряться в соответствии с требованиями технического надзора в области экспертизы промышленной безопасности опасных производственных объектов в горнорудной и угольной промышленности, диагностике горно-транспортного, горно-шахтного и обогатительного оборудования.

    За основу как мы видим должен быть взят коллектив отдела ТД и НК. Давайте рассмотрим эти понятия подробнее.

    Техническая диагностика - это установление и изучение признаков, характеризующих наличие дефектов в машинах (узлах), для предсказания возможных отклонений в режимах их работы. Из определения видно, что процедура изучения (анализа) признаков дефектов должна документироваться всегда. Далее определим основные задачи ТД и основные направления необходимых работ НК и обеспечения надежности.

    Основными задачами технической диагностики являются:

    • Повышение уровня безопасности оборудования
    • Обеспечение надежности работы оборудования
    • Сокращение длительности вынужденных (аварийных) простоев
    • Сокращение времени ремонтов
    • Увеличение межремонтного интервала
    • Повышение качества ремонта
    • Оптимизация технологического процесса
    • Удешевление ремонта (исключение замены исправных деталей, выявление причин дефекта)

    Основные направления для определения и изучения признаков, характеризующих проявление и развитие дефектов в узлах и агрегатах машин для предсказания возможных отклонений от нормальных режимов работы методами ТД и НК

    МЕТОДЫ ОБОРУДОВАНИЕ Вибродиагностика и вибромониторинг Энергомеханическое оборудование с движущимися частями Акустико-эмиссионная диагностика Сосуды давления, резервуары, трубопроводы, несущие конструкции Трибодиагностика (анализ качества смазки (масла) и выявления частиц износа) Трущиеся элементы (подшипниковые узлы, ответственное энергомеханическое оборудование) Тепловидение и термография Электроэнергетическое оборудование, теплообменное оборудование, теплоизоляция, котлы, печи и др. Анализ токов и электроимпульсное тестирование Токопроводящая часть и изоляция оборудования Аэроультрозвуковой контроль утечек (вакуумные утечки) Компрессионное оборудование Ультразвуковая дефектоскопия Состояние и толщина стенок трубопроводов, сосудов и резервуаров Параметрическая диагностика технологического процесса Технологическая или механическая деградация, коррозия и пр.

    Опираясь на основные достижения средств ТД и НК необходимо провести оптимизацию контролируемых параметров по нескольким критериям (например все диагностические и ремонтные данные хранятся в компьютеризированной системе управления системы ТОиР). Надо определить необходимые и достаточные условия по выбору аппаратных средств функциональной и тестовой диагностики в зависимости от выбранных методов прогноза технического состояния ГШО, а также инструментов и форм документов удобных для анализа (например, приборы центровки, динамической балансировки, виброанализаторы, пирометры, тепловизоры, индукционные нагреватели, стенд входного контроля подшипников качения, съемники, стационарные системы контроля работают по регламенту единой автоматизированной базы данных). Необходимо определить пороги для конфигурации глубины развивающих дефектов и установить величину опасной зоны. При этом необходимо понимать различие между мониторингом и диагностикой не зависимо каким видом систем вы будете пользоваться (переносные, стендовые или стационарные).

    МОНИТОРИНГ - распознавание текущего технического состояния механизма;
    • сравнение диагностических параметров с пороговыми значениями
    • прогноз изменений диагностических параметров

    ДИАГНОСТИКА - выявление причин и условий, вызывающих неисправности, и принятие обоснованных решений по их устранению.

    • определение вида и величины каждого дефекта
    • сравнение величины дефекта с пороговыми значениями
    • прогноз развития (выявление остаточного ресурса)

    В зависимости от состояния оборудования: нерабочее, частично рабочее (эксплуатация только на нагрузках ниже номинальных) и рабочее, утверждают этапы и виды измерений.

    Этапы проведения диагностических измерений

    • После монтажа или ремонта;
    • После завершения приработки или в процессе эксплуатации;
    • После нарушения технологического режима;
    • Перед остановкой на ремонт.

    Виды диагностических измерений

    Диагностические измерения и исследования оборудования можно условно разделить на два вида:

    1. Контрольные измерения:
      • текущее,
      • полное,
    2. Специальные измерения

    На сегодняшний момент одним из основных регламентирующих международных стандартов принятым Росстандартом для определения критериев оценки диагностического (вибрационного) состояния машин и механизмов различных типов является ИСО ГОСТ-10816. Настоящий стандарт является базовым документом для разработки руководств по измерению и оценке вибрации машин. Критерии оценки для машин конкретных типов должны быть установлены в соответствующих отдельных стандартах. В таблице 1 приведены только временные, примерные критерии, которыми можно пользоваться при отсутствии подходящих нормативных документов. По ней можно определить верхние границы зон от А до С (см. 5.3.1), выраженные в средних квадратических значениях виброскорости vrms , мм/с, для машин различных классов:

    • Класс 1 - Отдельные части двигателей и машин, соединенные с агрегатом и работающие в обычном для них режиме (серийные электрические моторы мощностью до 15 кВт являются типичными машинами этой категории).
    • Класс 2 - Машины средней величины (типовые электромоторы мощностью от 15 до 875 кВт)безспециальных фундаментов, жестко установленные двигатели или машины (до 300 кВт) на специальных фундаментах.
    • Класс 3 - Мощные первичные двигатели и другие мощные машины с вращающимися массами, уста­новленные на массивных фундаментах, относительно жестких в направлении измерения вибрации.
    • Класс 4 - Мощные первичные двигатели и другие мощные машины с вращающимися массами, уста­новленные на фундаменты, относительно податливые в направлении измерения вибрации (например, турбогенераторы и газовые турбины с выходной мощностью более 10 МВт).

    Таблица 1. Примерные границы зон для машин различных классов

    4.5
    vrms, мм/с Класс 1 Класс 2 Класс 3 Класс 4
    0.28 А A A A
    0.45
    0.71
    1.12 B
    1.8 B
    2.8 С B
    C B
    7.1 D C
    11.2 D C
    18 D
    28 D
    45

    Ниже приведены некоторые практические примеры необходимого диагностического оборудования ТД и НК, а также виды представления отчетной информации.


    Рис.4 Лазерная система центровки расчитала допустимые значения по несоосности


    Рис.5 Термограмма (плохой контакт одной из фаз)



    Рис.6 Стенд входного контроля подшипников качения с примером ПО ведения базы данных диагностических признаков дефектации.


    Рис.7 Основные причины повышенной вибрации машин

    Подводя итоги вышесказанному нельзя не обратить внимание на статистику основных причин повышенной вибрации машин. Из гистограммы на рис.7 видно, что несоосность ГШО, неточности геометрии машин (паралельность, перпендикулярность валов и направляющих), дисбаланс роторов в большинстве случаев может в совокупности достигать 80%. Результаты 10 летней работы проведения диагностических исследований нашими специалистами показал, что данное правило работает независимо от того на каком этапе жизненного цикла находится машинное оборудование (на этапе приработке, этапе работоспособности или этапе развития дефектов).

    Очень приятно, что во всех отраслях промышленности работают основные три ключевых фактора определяющих общий успех предприятия:

    • общее понимание необходимости процесса преобразований руководителями (постановка задачи и выбор варианта решения технических задач);
    • стремление к внедрению новых прогрессивных технологий и современных аппаратных средств;
    • желание поддерживать процессы внедрения новых технологий и качественно новой культуры технического обслуживания оборудования и работы в целом.

    Хочется пожелать благополучного развития всем отраслевым предприятиям, которое стало возможным благодаря экономическому росту экономики России в последние несколько лет.

    Идея проактивного технического обслуживания оборудования (в дальнейшем ПАО) заключается в обеспечении максимально возможного межремонтного срока эксплуатации оборудования за счет применения современных технологий обнаружения и подавления источников отказов.

    Основой проактивного технического обслуживания являются:

    идентификация и устранение источников повторяющихся проблем, приводящих к сокращению межремонтного интервала оборудования;

    устранение или значительное снижение факторов, отрицательно влияющих на межремонтный интервал или срок эксплуатации оборудования;

    распознавание состояния нового и восстановленного оборудования с целью проверки отсутствия признаков дефектов, уменьшающих межремонтный интервал;

    увеличение межремонтного интервала и срока эксплуатации оборудования за счет проведения монтажных, наладочных и ремонтных работ в точном соответствии с техническими условиями и регламентом.

    ПАО базируется на применении нескольких, приведенных ниже, компонентов, сочетание которых дает максимальный эффект.

    Анализ причин внеплановых остановов, аварий, укороченных межремонтных интервалов, включающий выявление повторяющихся проблем, возникающих при эксплуатации оборудования.

    Техническое обслуживание и ремонт обычно устремлены на устранение в основном очевидных дефектов оборудования. При этом нередко частые ремонты воспринимаются как вполне нормальное явление. Анализ коренных проблем отказов направляет передовые аналитические средства и инженерную логику на идентификацию и коррекцию скрытой основной проблемы. Принятие программы анализа коренных проблем отказов часто приносит предприятию значительную экономию.

    Принципиально дефекты и отказы (в т. ч. в начале срока службы), классифицируемые по причине возникновения, могут быть связаны с конструкторскими дефектами и неправильным применением, производственными дефектами (изготовления) и дефектами материала, дефектами сборки и эксплуатационными дефектами (нарушения технологии сборки, монтажа и соединения узлов, ненужное ТО, нарушения условий эксплуатации), технологическими дефектами (отклонение рабочих параметров от номинальных).

    В качестве примера конструкторской ошибки при проектировании можно привести случай, связанный с недостаточным учетом влияния погодно - климатических условий при эксплуатации оборудования: непродуманная конструкция заградительной решетки воздухозабора воздушного компрессора газовой турбины пропанового центробежного компрессора обуславливала накопление и сброс частиц льда с последующим их периодическим попаданием в турбину, столкновением и ускоренным разрушением лопаток воздушного компрессора.

    В качестве примера неправильного применения по вине проектировщика можно привести случай, связанный с периодическим, примерно каждые три месяца, выходом из строя подшипников качения ЭД вертикального насосного агрегата, имевшим место по окончании монтажа в продолжение гарантийной эксплуатации технологической установки. Первый выход из строя подшипника качения был воспринят как нормальное явление, однако после второго внезапного отказа провели анализ причин, в результате которого выяснилось, что опорно - упорный подшипник двигателя, в соответствии с техническими условиями завода - изготовителя, мог быть применим только при горизонтальной ориентации ротора. Издержки были компенсированы фирмой -п оставщиком.

    В качестве другого примера неправильного применения по вине проектировщика можно привести случай, связанный с необходимостью проведения ремонта каждые 6...9 месяцев винтовых компрессоров компримирования газа в газлифтной системе из -з а изменения условий эксплуатации и отклонения рабочих параметров от номинальных по ТУ (эксплуатация на пределе производительности и давления). При анализе причин частых ремонтов оказалось, что для подобной задачи данный тип компрессоров принципиально непригоден и требует замены.

    В качестве примера нарушения технологии изготовления деталей (дефект материала) можно привести случай, связанный с коротким сроком службы подшипников скольжения крупных агрегатов нефтехимзавода: примерно после 4000...6000 часов эксплуатации наблюдалось растрескивание и выкрашивание баббита вкладышей. В результате анализа установили, что причина - пережженный баббит в результате дефектной технологии изготовления вкладышей. Небольшая коррекция технологии привела к увеличению среднего срока службы вкладышей более чем в три раза.

    Нередко повторяющаяся проблема с оборудованием, лежащая на поверхности, является симптомами более скрытого дефекта: на одном из предприятий подшипники редуктора крупного компрессорного агрегата после многолетней успешной эксплуатации вдруг каждые 2...3 месяца стали внезапно выходить из строя, приводя к внеплановому останову производства. После проведения анализа персоналом завода было установлено, что причиной оказалось нарушение качества смазочного масла, повлекшее рост температуры подшипника, при этом параметры вибрации практически не превышали допустимых значений.

    Безукоризненное соблюдение требований технических условий при монтаже и ремонте агрегата и исследование вибрации при выводе из ремонта могут значительно продлить последующий межремонтный интервал.

    Например, две наиболее распространенные операции при завершении монтажа или ремонта агрегата (которые на вспомогательном оборудовании нередко выполняются с низким качеством или вообще игнорируются) - балансировка ротора и центровка узлов оборудования. Дополнительные затраты времени и ресурсов для достижения при проведении этих операций самых жестких норм не намного больше, чем те, которые требуются для проведения этих операций со средним качеством, но достижение уровней жестких норм часто способно увеличить даже вдвое межремонтный интервал оборудования.

    В качестве примера можно привести результаты внедрения лазерного оборудования для центровки, документированные на ряде нефтетранспортных и нефтехимических предприятий, где была реализована эта программа. Эффект от точной центровки был следующим: средний срок службы подшипников и муфт возрос (на некоторых предприятиях) в 3...8 раз, затраты на техническое обслуживание уменьшились в среднем на 5...7%, межремонтный интервал возрос в среднем на 10... 12%, внеплановые остановы оборудования, возникшие в результате расцентровки, сократилось более, чем наполовину.

    Анализ основных причин выхода подтттипников качения из строя показывает, что, по статистике, исправный подшипник выходит из строя примерно в 30% случаев из -з а нарушения технологии монтажа. Таким образом, применяя недорогое специализированное оборудование для нагрева подшипников при монтаже, можно добиться снижения выхода из строя подшипников по этой причине почти на треть.

    УДК 629.7.05

    ПЕРСПЕКТИВЫ РАЗВИТИЯ МЕТОДОВ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ СЛОЖНЫХ СИСТЕМ БОРТОВОГО КОМПЛЕКСА ОБОРУДОВАНИЯ

    ©2012 Н. В. Чекрыжев, А. Н. Коптев

    Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет)

    В статье рассматриваются принципы качественного подхода к перспективному методу проактивного обслуживания сложных систем бортового оборудования авиационной техники.

    Безопасность полётов, управление рисками, развитие отказа, проактивное техническое обслуживание.

    За последние 30 лет главной задачей развития авиационно-транспортной системы является поиск новых подходов в решении проблемы повышения безопасности полётов воздушных судов (ВС).

    Очевидно, что традиционная ретроактивная (Reactive) идеология профилактики авиационных событий, построенная на строгом соблюдении нормативных требований и внедрении профилактических рекомендаций, разработанных по результатам расследования происшедших событий, себя исчерпала .

    Поэтому ИКАО разработала принципиально новую идеологию профилактики авиационных происшествий и инцидентов, названную «управление безопасностью полётов».

    Новая идеология предотвращения авиационных происшествий (АП) и инцидентов предполагает создание в авиакомпании системы управления безопасностью полетов (СУБП), которая:

    Выявляет фактические и потенциальные угрозы безопасности;

    Гарантирует принятие корректирующих мер, необходимых для уменьшения факторов риска/опасности;

    Обеспечивает непрерывный мониторинг и регулярную оценку достигнутого уровня безопасности полётов.

    СУБП акцентирована не на ожидании негативного события, а на выявлении

    опасных факторов в авиационной системе, которые ещё не проявились, но могут стать причиной инцидентов, аварий и катастроф. Такой подход в профилактике авиационных происшествий получил наименование «проактивный» (Proactive).

    По сути, проактивное обслуживание предполагает тот же реагирующий подход, как и обслуживание по состоянию с контролем параметров (ТЭП), но в качестве диагностических признаков выбираются такие параметры системы, наблюдение которых позволяет контролировать глубинные причины деградации факторов стабильности системы (рис. 1).

    Накопленный опыт расследования авиационных событий показал, что каждое из них было обусловлено воздействием нескольких причин, которые долгое время скрывались в виде недостатков (опасных факторов или факторов риска) компонентов авиационной системы.

    Пять базовых структурных элементов концепции безопасности полётов лежат в основе модели Ризона (рис. 2).

    Меры по обеспечению безопасности полётов должны быть направлены на контроль за организационными процессами, содержащими скрытые условия в виде недостатков в конструкции оборудования, упущения в подготовке персонала и т.п., а также для улучшения условий на рабочем месте.

    Рис. 1. Структура проактивного обслуживания

    Рис. 2. Модель Ризона

    Инструментом для анализа компонентов и особенностей эксплуатационных контекстов и их возможных взаимодействий с людьми является модель SHEL(L) (рис. 3), призванная дать общее представление о взаимосвязи индивидуумов с компонентами и особенностями рабочего места .

    Рассмотренные выше стратегии и методы технического обслуживания авиационной техники направлены на устранение в основном очевидных неисправностей и отказов изделий функциональных систем (ФС) ВС.

    Рис. 3. Модель БИЕЦЬ)

    Накопленный опыт и практика расследования авиационных событий доказывают, что наличие любого скрытого недостатка в системе в виде опасного фактора или фактора риска может привести при определённых условиях к трансформации его в причину, которая и обусловливает последующее негативное событие.

    Поэтому ИКАО предложила изменить содержание профилактических работ модели обеспечения безопасности полётов (ОБП) на проведение целенаправленной работы по выявлению и устранению

    опасных факторов в каждом компоненте авиационной системы модели управления безопасностью полетов (УБП) (рис.

    При внедрении управления БП (УБП) содержание профилактической работы определяется опасными факторами (ОФ) компонентов авиационной системы. Поэтому в соответствии с проактивным подходом в авиакомпаниях разрабатываются специальные методики, предназначенные для оценки степени риска прогнозируемых событий.

    Рис. 4. Модели обеспечения (ОБП) и управления (УБП) безопасностью полетов: ОД - ошибочные действия, ОФ - опасные факторы, И - инциденты, СИ - серьезные инциденты, А - аварии, К - катастрофы

    Практическая основа управления безопасностью - это управление рисками, методика которого изложена в «Программе управления рисками в отношении безопасности полётов». Переход от обеспечения (ОБП) к управлению безопасностью полётов (УБП) на практике означает проведение профилактических работ до развития авиационного события путём выявления и устранения источников

    опасности (факторов риска) во всех компонентах авиационной системы.

    В настоящее время расходы на техническое обслуживание составляют от 12 до 18% от прямых эксплуатационных расходов.

    В соответствии с требованиями ИКАО на сегодняшний день одним из перспективных является метод упреждающего (проактивного) технического

    обслуживания (Proactive Maintenance), основанный на использовании технологии прогнозирующего анализа (Predictive Analytics) компании Macsea.

    Основанная на сборе и обработке информации технология позволяет прогнозировать дальнейшее развитие событий, реализована в пакете Macsea Dexter, который может осуществлять автоматический мониторинг и диагностику состояния любого оборудования. Система производит непрерывный анализ и обработку данных, оповещая оператора о появившихся или возможных проблемах, анализирует работу каждого компонента оборудования в реальном времени и прогнозирует его состояние и производительность в будущем .

    По данным российской компании «Практическая Механика» при внедрении проактивного технического обслуживания время плановых остановов составляет не более 10% от общего времени работы оборудования, а среднее время между отказами по причине выхода из строя оборудования существенно увеличивается. По данным статистики прямые затраты на ТО при внеплановых ремонтах в 1,5 - 3 раза больше, чем при плановых, треть работ планово-предупредительных работ являются лишними, четверть запасных частей для ремонта лежит на складе без движения более двух лет.

    Исследования компании Emerson Process Management показывают, что расходы на профилактическое обслуживание будут в 5 раз выше, а на обслуживание при необходимости - в 15 раз выше, чем в случае упреждающего подхода.

    Основным направлением повышения эффективности работы авиакомпании является увеличение налёта часов и снижение себестоимости единицы транспортной продукции.

    Применение метода упреждающего обслуживания сокращает время вынужденных простоев ВС на техническом обслуживании (ТО), материальные и человеческие ресурсы, что повышает рентабельность авиакомпании.

    Встроенные бортовые устройства регистрации информации самолётов последнего поколения позволяют получить дополнительные данные результатов диагностирования состояния и работы функциональных систем ВС вне аэропорта базирования, что повышает вероятность определения источника опасности (отказа) и уменьшает потребность в непосредственном осмотре оборудования.

    В среднем незапланированное время простоя для типичного технологического процесса может стоить 1-3% дохода и 3040% прибыли в год.

    Мониторинг состояния ФС позволяет проводить ТО только тех изделий, которые этого требуют. Следовательно снижается общая трудоёмкость процедур технологического процесса, сокращаются расходы на материалы и объёмы запасного оборудования и сопутствующие затраты на его содержание, которые могут составлять 25% стоимости.

    В процессе эксплуатации ВС его узлы и агрегаты подвергаются постоянному воздействию эксплуатационных факторов, влияющих на их техническое состояние, структурные параметры элементов изменяются, упорядоченность системы в целом и её функциональные качества ухудшаются, деградируют.

    Работы теории старения машин Хрущова М. М., Зайцева А. К., Дьячкова А. К., Конвисарова Д. В. не дают полного анализа реального фактического состояния системы в целом, т.к. не учитывают случайного характера внешнего изменения условий работы отдельных её деталей и узлов (закономерностей ухудшения условий смазки во времени, нарушения регулировок в эксплуатации и т.д.) и не рассматривают работу изделий в комплексе.

    Решение проблемы повышения надёжности ФС может быть получено только при комплексном подходе, предполагающем охват всех этапов эксплуатации на протяжении всего жизненного цикла ВС.

    Анализ надёжности функциональных систем ВС показывает, что большин-

    ство эксплуатационных отказов носит постепенный характер, и связано это с нарастающим старением изделий системы

    Информацию о нарастающем старении систем можно получить из рассмотрения динамики некоторых определяющих параметров, как, например, количественная оценка механического износа элемента конструкции, расхода топлива, напряжения пружины, повышения вибрации вращающихся деталей; технологические и режимные параметры (температу-

    ра, нагрузка, давление, влажность и др.); частицы износа в смазке и т.д.

    Условия использования, приводящие к отклонению в параметрах источника отказа (условный отказ), вызывают разрушение материала объекта системы (начинающийся отказ), что является прямой причиной сбоев в работе (надвигающийся отказ), а это, в свою очередь, приводит к состоянию нарушения функционирования системы (крутому или катастрофическому отказу), как показано на рис. 5 .

    Рис. 5. Схема развития отказа

    Идея проактивного технического обслуживания оборудования заключается в обеспечении максимально возможного межремонтного срока эксплуатации оборудования за счет применения современных технологий обнаружения и подавления источников отказов.

    Основой проактивного технического обслуживания являются:

    Идентификация и устранение источников повторяющихся проблем, приводящих к сокращению межремонтного интервала объекта;

    Устранение или значительное снижение факторов, отрицательно влияющих на межремонтный интервал или срок эксплуатации объекта;

    Распознавание состояния объекта с целью проверки отсутствия признаков дефектов, уменьшающих межремонтный интервал;

    Увеличение межремонтного интервала и срока эксплуатации объекта за счет проведения монтажных, наладочных и ремонтных работ в точном соответствии с техническими условиями и регламентом.

    По сути, проактивное обслуживание предполагает тот же реагирующий подход, как и обслуживание по состоянию с контролем параметров, но в качестве диагностических признаков выбираются такие параметры системы, наблюдение которых даёт возможность контролировать глубинные причины деградации факторов стабильности системы. Мониторинг изменения свойств материала на ранних стадиях отклонения параметра источника отказа позволяет путём предупредительного обслуживания данного источника предот-

    вратить дальнейшую деградацию системы в целом.

    Характерные качественные особенности влияния различных подходов к техническому обслуживанию на процесс эксплуатации и межремонтные интервалы исследуемого объекта проиллюстрированы на рис. 6.

    Кривая 1 (СоЗ) соответствует изменению состояния объекта эксплуатации при реактивном обслуживании (РО). Точка З соответствует поломке или отказу объекта или выработке ресурса, что предопределяет его замену или ремонт.

    Время эксплуатации

    Рис. 6. Зависимость уровня технического состояния объекта от времени эксплуатации при различных

    видах обслуживания:

    1 - реактивное обслуживание (РО), 2 - обслуживание по состоянию (ОС),

    3 - проактивное обслуживание (ПО)

    График 2 характеризует эксплуатацию объекта при обслуживании по состоянию (ОС) и состоит из трёх участков. Кривая СоО соответствует изменению параметров объекта эксплуатации до достижения ими предельной величины в точке

    О. Горизонтальный участок ОР отражает время ремонта, а вертикальная линия РН -повышение уровня рабочего состояния объекта до величины С1. При этом время развития последующих отказов до ремонта в диапазоне от Т1 до Т2, Т3 и т.д. в среднем уменьшается, а начальный уровень состояния после проведения ремонта уже не достигает начального (С1<Со), так как отказы одних агрегатов системы оказы-

    вают отрицательное влияние на работоспособность остальных.

    График 3 характеризует эксплуатацию объекта при проактивном обслуживании (ПО). Как было отмечено выше, данный вид обслуживания является следующей ступенью развития метода ОС, поэтому общий вид зависимости 3 аналогичен графику 2. Точка П соответствует отклонению параметра источника отказа от нормы.

    Горизонтальный участок отсутствует, т.к. корректировка состояния объекта до начального уровня Со, связанная с устранением глубинных причин отказов, как

    правило, не требует временного выхода объекта из эксплуатации.

    Данный рисунок наглядно отражает преимущества упреждающего подхода к ТО, основным из которых является отсутствие периодов вынужденного простоя объектов ТО, обусловленного ремонтом. Поэтому с некоторой долей идеализации для проактивного технического обслуживания характерен постоянный, не зависящий от времени эксплуатации уровень состояния С0 "вечного" агрегата, срок службы которого поддерживается путём систематического устранения источников дефектов, приводящих к преждевременному выходу его из строя.

    По данным независимых опросов, средние показатели производственной экономии, достигнутые благодаря применению упреждающего подхода, составляют: рентабельность инвестиций - десятикратная, сокращение расходов на обслуживание - 25-30%, сокращение количества аварий - 70-75%, уменьшение времени простоя - 35-45%, увеличение производительности - 20-25%.

    В связи с этим можно ожидать значительного эффекта от внедрения упреж-

    дающего подхода к ТО функциональных систем ВС, в том числе и увеличения сроков их эксплуатации.

    Библиографический список

    1. Doc. 9859 - AN/474. Руководство по управлению безопасностью полетов [Текст]. - ИКАО. - 2009.

    2. Doc. 9859 - AN/460. Руководство по управлению безопасностью полетов [Текст]. - ИКАО. - 2006.

    3. Хоске, М. Заботимся о «здоровье» оборудования [Текст] / М. Хоске // Control Engineering. - Россия. - Июль, 2006. -С.12-18.

    4. Александровская, Л. Н. Современные методы обеспечения безотказности сложных технических систем [Текст] / Л. Н. Александровская, А. П. Афанасьев, А. А. Лисов. - М.: Логос, 2001. - 208 с.

    5. Fitch, E.C. Extending Component Service Life Through Proactive Maintenance / E.C. Fitch // An FES/BarDyne Technology Transfer Publication #2. Tribolics, Inc., 1998.

    PROSPECTS OF DEVELOPMENT OF METHODS OF MAINTENANCE OF COMPLEX SYSTEMS OF AIRBORNE EQUIPMENT COMPLEX

    © 2012 N. V. Сhekrizhev, A. N. Koptev

    Samara State Aerospace University named after academician S. P. Korolyov

    (National Research University)

    The paper deals with the principles of a qualitative approach to a perspective method of proactive maintenance for complex systems of aircraft on-board equipment.

    Flight safety, management of risks, development offailure (refusal), proactive maintenance.

    Чекрыжев Николай Викторович, доцент кафедры эксплуатации авиационной техники, Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет). Е-mail: [email protected]. Область научных интересов: контроль и испытания ЛА и их систем.

    Коптев Анатолий Никитович, доктор технических наук, профессор, заведующий кафедрой эксплуатации авиационной техники, Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет). Е-mail: [email protected]. Область научных интересов: контроль и испытания ЛА и их систем.

    Nikolay ^ekrizhev, associate professor of the aircraft maintenance department, Samara State Aerospace University named after academician S. P. Korolyov (National Research University). E-mail: [email protected]. Area of research: Control and testing of aircraft and their systems.

    Anatoliy Koptev, doctor of technical sciences, professor, head of the aircraft maintenance department, Samara State Aerospace University named after academician S. P. Korolyov (National Research University). E-mail: [email protected]. Area of research: Control and testing of aircraft and their systems.

    Рассказать друзьям