Статистическая и динамическая балансировка ответственных деталей. Статическая балансировка рабочих колес вращающихся механизмов. Сравнение методов балансировки на различных устройствах

💖 Нравится? Поделись с друзьями ссылкой

Главным источником вибрации агрегатов является неуравновешенность роторов , которая всегда имеет место, из-за того, что ось вращения и ось инерции, проходящая через центр масс, не совпадают. Неуравновешенность роторов подразделяют на следующие три вида.

Статическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции параллельны (см. рис.1).

Рис.1

Моментная неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются в центре масс ротора (см. рис.2).

Рис.2

Динамическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются не в центре масс или перекрещиваются (см. рис.3). Она состоит из статической и моментной неуравновешенности.

Примечание: Здесь и далее выделены курсивом термины и определения, установленные ГОСТом 19534 – 74. Балансировка вращающихся тел. Термины.

Рис.3


Частным случаем динамической неуравновешенности является квазистатическая неуравновешенность, при которой ось ротора и его главная центральная ось пересекаются не в центре масс ротора.

Вызываемая неуравновешенностью центробежная сила определяется по формуле:

Fцн = P/g w 2 r = P/g (?n/30) 2 r, (1)
где w = 2?f = ?n/30– угловая скорость,
f – число оборотов ротора в секунду,
n – число оборотов в минуту,
P – вес ротора, q = 9,81м/сек2 – ускорение свободного падения,
r – радиус неуравновешенной массы или модуль эксцентриситета.

На высоких оборотах неуравновешенные массы могут развить центробежные силы до недопустимых значений, которые приведут к разрушению машины. Для большинства машин достижение неуравновешенной центробежной силой значения ок. 30% веса ротора является предельно допустимой величиной.

Произведение неуравновешенной массы на её эксцентриситет называют дисбалансом. Дисбаланс - величина векторная. Чаще используется термин "значение дисбаланса", которое равно произведению неуравновешенной массы на модуль её эксцентриситета.

Дисбалансы роторов в процессе эксплуатации могут быть вызваны износом рабочих частей, изменением посадки дисков, ослаблением крепления элементов входящих в состав роторов, деформацией и другими факторами, приводящими к смещению масс относительно оси вращения.

Значение дисбаланса обычно указывается в гмм, гсм. 1гсм = 10гмм.

Иногда для задания допуска используют отношение значения дисбаланса к массе ротора, называемое удельным дисбалансом . Удельный дисбаланс соответствует эксцентриситету центра массы ротора.
е ст = D/m (2)

Дисбалансы устраняются балансировкой. Балансировка - это процесс определения значений и углов дисбалансов ротора, и уменьшения их корректировкой масс. На практике получили распространение два вида балансировки: статическая и динамическая.


2. Балансировка. Общие сведения

Статическая балансировка, как правило, проводится в одной плоскости коррекции и применяется, главным образом, к дисковым роторам. Её можно использовать, если отношение длины ротора к его диаметру не превышает 0,25. Плоскостью коррекции называют плоскость, перпендикулярную оси ротора, в которой расположен центр корректирующей массы (массы, используемой для уменьшения дисбалансов ротора).

При статической балансировке определяется и уменьшается главный вектор дисбалансов ротора, характеризующий его статическую неуравновешенность. Главный вектор дисбалансов равен сумме всех векторов дисбалансов, расположенных в различных плоскостях, перпендикулярных оси ротора (см. рис. 4).

Рис.4



Для роторов, у которых их длины соизмеримы с диаметрами или превосходят их, статическая балансировка неэффективна, а в некоторых случаях может оказаться вредной. Например, если плоскость коррекции окажется на значительном расстоянии от главного вектора дисбалансов, то, уменьшив статическую неуравновешенность, можно увеличить моментную неуравновешенность.

Динамическая балансировка - это такая балансировка, при которой определяются и уменьшаются дисбалансы ротора, характеризующие его динамическую неуравновешенность (см. рис.4). При динамической балансировке уменьшаются как моментная, так и статическая неуравновешенность ротора одновременно.

Есть много методов балансировки. Все они основаны на предположении линейности системы, то есть амплитуды колебаний считаются пропорциональными значению дисбаланса, а фазы независимы от его величины. Существует одноплоскостная и многоплоскостная балансировка. При одноплоскостной балансировке расчёт корректирующих масс производится последовательно для каждой плоскости коррекции, при многоплоскостной - одновременно.

Многоплоскостная балансировка с использованием метода одновременного измерения амплитуд и фаз колебаний наиболее распространена при балансировке роторов агрегатов типа ГТК 10-4. Точнее, наиболее распространена двухплоскостная балансировка, которая является частным случаем многоплоскостной. Для расчёта корректирующих масс при таком методе балансировки необходимо выполнить, как минимум, три пуска: один начальный (нулевой) и два пробных с единичными (пробными) массами m п1 , m п2 , установленными на расстояниях r п1 , r п2 от оси вращения (см. рис.5). Порядок и комбинации установок пробных грузов могут быть различными.

Рис.5.


При использовании этого метода балансировки считают, что система позволяет использовать принцип суперпозиции. Расчёт корректирующих масс и мест их установки в такой системе может производиться различными способами: графическим, аналитическим или графоаналитическим.

Графические и графоаналитические расчёты с построением достаточно сложных векторных диаграмм широко использовались до появления балансировочных средств с микропроцессорами. Приёмы выполнения таких расчётов можно найти в литературе . В настоящее время они практически не используются, так как современная техника обеспечивает решение таких задач проще, точнее и быстрее.

Современная микропроцессорная техника с помощью программных средств решает задачу расчёта чаще всего аналитически. Рассмотрим, в чём заключается суть решения этой задачи.

Колебания системы ротор - опорная конструкция могут быть описаны системой уравнений (при каждом пуске двумя уравнениями с шестью неизвестными).


А0 = ? а1 D I +? а2 D II

В0 = ? в1 D I + ? в2 D II
А1 = ? а1 (D I +r п1 m п1 ) + ? а2 DII
В1 = ? в1 (D I +r п1 m п1 ) + ? в2 D II (5)
А2 = ? а1 D I + ? а2 (D II +r п2 m п2 )
В2 = ? в1 D I + ? в2 (D II +r п2 m п2 )

Где, А 0 ,А 1 ,А 2 , В 0 ,В 1 ,В 2 – амплитуды колебаний опор "а", "в" при нулевом и пробных пусках, произведённых на одной частоте.
? а1 , ? а2 , ? в1 , ? в2 – коэффициенты влияния, представляющие векторы колебаний опор "а" и "в", вызванных единичными массами mп1, mп2.
D I , D II – исходные дисбалансы в выбранных плоскостях коррекции І и ІІ.
r п1 m п1 , r п2 m п2 – внесённые дисбалансы за счёт установки единичных (пробных) масс, в плоскостях коррекции І и ІІ.

В этих уравнениях неизвестны шесть векторных величин: D I , D II , ? а1 , ? а2 , ? в2 , ? в2 . Чтобы найти их, необходимо решить систему этих уравнений. Определение коэффициентов влияния и корректирующих масс для компенсации исходных дисбалансов является достаточно сложной задачей. Однако решение такой задачи с помощью современных средств, осуществляется автоматически в процессе пусков. Определённые из уравнений (5) коэффициенты влияния можно использовать для расчёта корректирующих масс при балансировке последующих однотипных роторов без выполнения двух пробных пусков.

В тех случаях, когда число плоскостей коррекции большее, чем 2 (например, если производится балансировка одного ротора с опорами более, чем 2-е или балансировка сцепленных роторов), количество пробных пусков определяется числом плоскостей коррекции, в каждую из которых последовательно устанавливаются пробные массы. Уравнения, описывающие колебания системы, составляются аналогично, как и при двухплоскостной балансировке. Система этих уравнений и её решение усложняются, так как количество коэффициентов влияния увеличивается за счёт увеличения количества плоскостей коррекции и увеличивается количество уравнений за счёт увеличения количества пусков.

Чаще всего динамическая балансировка проводится на балансировочных станках. Обычно балансировка на станках проводится на более низких оборотах, чем рабочие обороты роторов. Это обусловлено техническими возможностями балансировочных станков. Высокооборотные балансировочные станки мало распространены из-за их дороговизны и большой энергоёмкости. Балансировка на низкооборотных станках достаточно эффективна и обеспечивает высокую точность в тех случаях, когда ротора относятся к классу жёстких роторов . Для гибких роторо в балансировка на низкооборотных станках не всегда эффективна.

Жёсткий ротор определяется как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов не будут превышать допустимые на всех частотах вращения вплоть до наибольшей эксплуатационной. Динамическая балансировка жёсткого ротора производится, как правило, в двух плоскостях.

Гибкий ротор определяется, как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов могут превышать допустимые на иных частотах вращения вплоть до наибольшей эксплуатационной . При балансировке гибких роторов используется, как правило, более двух плоскостей коррекции.


3. Выбор допуска и точности балансировки

Из практики известно, что виброскорость является наиболее объективным критерием для оценки вибрации. Исходя из этого, чаще всего оценка и нормирование вибрационного состояния производится по виброскорости. Поэтому допуск на балансировку принято устанавливать таким образом, чтобы в рабочем диапазоне оборотов иметь приемлемую виброскорость. Исходя из этих условий допустимый дисбаланс должен изменяться обратно пропорционально частоте вращения ротора. То есть чем выше рабочая частота вращения, тем меньше должен быть допустимый дисбаланс. Следовательно должна обеспечиваться следующая зависимость:
е ст w = Конст. , где е – удельный дисбаланс, w – угловая частота.
При этом предполагается, что ротор и опоры жёсткие. Величину естw приняли определяющей при классификации точности балансировки.

Классы точности балансировки жёстких роторов установлены ГОСТом 22061-76 в соответствии с международным стандартом ИСО 1949.

Согласно этой классификации каждый класс характеризуется постоянной величиной е ст w. Каждый последующий класс отличается от предыдущего в 2,5 раза. ГОСТ 22061-76 устанавливает 13 классов точности; с нулевого по двенадцатый, для различных групп жёстких роторов. Ротора газоперекачивающих агрегатов относятся к 3-ему классу точности. Значения допустимых дисбалансов рассчитываются и задаются разработчиком машин согласно ГОСТу 22061-76.


4. Особенности балансировки крупногабаритных роторов

Балансировка крупногабаритных типа ОК ТВД ГТК 10-4 роторов имеет свои особенности, хотя нет нормативных документов, устанавливающих какое - либо разделение роторов в зависимости от их габаритов. При больших длинах (более 4-х метров) и больших массах роторов (весом в несколько тонн) необходимо учитывать влияние термических деформаций на дисбалансы. При таких размерах температура роторов неодинакова в различных точках. Это обусловлено тем, что в производственных помещениях всегда имеются источники теплового излучения и конвекционных потоков. Да и сами балансировочные станки являются таковыми. Длинные ротора особенно чувствительны к малейшему перепаду температуры в радиальном направлении. Проведённые исследования влияния тепловых деформаций роторов (ОК ТВД агрегата ГТК 10-4) на дисбалансы показывают, что перепад температуры в радиальном направлении на 1єС (при длине ротора 4 и более метров) приводит к термическим дисбалансам, в 5-10 раз превышающим допуск. Для исключения ошибок при балансировке из-за тепловых деформаций необходимо обеспечить предварительную термостабилизацию балансируемых роторов. На практике это осуществляется следующим образом. Ротора, поступающие на балансировку, выдерживаются в помещении до выравнивания его температуры с температурой окружающей среды. Затем ротор устанавливается на станок и приводится во вращение. Ротора весом более 5т необходимо выдержать в режиме непрерывного вращения (или в режиме пуск – останов - пуск) в течение не менее 2-х часов и лишь после этого произвести его балансировку. В процессе вращения выравнивается температура в радиальном направлении. Если балансировка по каким - либо причинам была прервана (прекращение вращения около 1 часа и более), то её завершению вновь должна предшествовать операция вращения ротора для выравнивания температуры в радиальном направлении. При перерывах менее 2-х часов время вращения для выравнивания температуры требуется не более времени перерыва.

Внимание! У Вас нет прав для просмотра скрытого текста.


Источники информации, принятые во внимание при составлении методического пособия по балансировке роторов.

    ГОСТ 19534 – 74. Балансировка вращающихся тел. Термины.

    ГОСТ 22061 – 76 Система классов точности балансировки и методические указания.

    Руководящие указания по балансировке роторов ГТУ на балансировочном станке и в собственных подшипниках. "Оргэнергогаз" М., 1974год.

    Вибрации в технике. Т.6. Защита от вибрации и ударов. Под ред. чл.-кор. АН СССР К.В. Фролова. М. "Машиностроение", 1981г.

    Сидоренко М.К. Виброметрия газотурбинных двигателей.

    Неуравновешенность (дисбаланс ) вращающихся частей является одним из факторов, лимитирующих надежность автомобилей в эксплуатации. Неуравновешенность — состояние, характеризующееся таким распределением масс, которое вызывает переменные нагрузки на опоры, повышенные износ и вибрацию, способствует быстрой утомляемости водителя.

    Дисбаланс изделия — векторная величина, равная произведению локальной неуравновешенной массы т на расстояние до оси изделия г или произведению веса изделия G на расстояние от оси изделия до центра масс е, т. е. D = mr = Ge.

    Виды неуравновешенности

    а - статическая, б - динамическая, смешанная.

    Проводится при возникновении в процессе изготовления (восстановления) деталей, сборки узлов и агрегатов и изменяет свое количественное значение в процессе эксплуатации и текущего ремонта.

    В зависимости от взаимного расположения оси изделия и его главной центральной оси инерции различают три вида неуравновешенности: статическую, моментную и динамическую.
    При статической неуравновешенности ось ОВ вращения детали смещена на эксцентриситет е и параллельна главной центральной оси инерции. Данная неуравновешенность присуща дискообразным деталям (маховики, диски сцепления, шкивы, крыльчатки, сцепления в сборе и др.) и проявляется как в статическом, так и в динамическом состоянии. Статическая неуравновешенность определяется главным вектором дисбалансов (статический дисбаланс).
    При моментной неуравновешенности ось изделия и его главная центральная ось инерции пересекаются в центре масс. Данная неуравновешенность определяется главным моментом дисбалансов М или двумя равными по значению антипараллельными векторами дисбалансов в двух произвольных плоскостях.
    Моментная неуравновешенность является частным случаем более общей — динамической неуравновешенности, при которой ось изделия и его главная центральная ось пересекаются не в центре масс или перекрещиваются. Присуща она деталям и узлам типа валов, состоит из статической и моментной неуравновешенностей и определяется главным вектором дисбалансов и главным моментом дисбалансов или двумя приведенными векторами дисбалансов (в общем случае разных по значению и непараллельных), лежащих в двух выбранных плоскостях.

    Дисбаланс изделия характеризуется числовым значением (в г - мм, г см, кг-см) и углом дисбаланса (в град.) в системе координат, связанных с осью изделия.

    Главный вектор дисбалансов В„ может быть разложен на два параллельных DCTl и Дт2, приложенных в выбранных плоскостях, а главный момент дисбалансов М может быть заменен моментом пары равных антипараллельных дисбалансов Ц,1 и DM2 в тех же плоскостях. Геометрические суммы Дт! + Ai = Д и Дт2 + А2 = А образуют два приведенных дисбаланса А и А в выбранных плоскостях, которые полностью определяют динамическую неуравновешенность изделия.
    При вращении неуравновешенного изделия возникает переменная по величине и направлению центробежная сила инерции. Приведение изделий, обладающих неуравновешенностью, в уравновешенное состояние осуществляется их балансировкой, т. е. определением дисбаланса изделия и устранением (уменьшением) его путем удаления или добавления корректирующих в определенных точках масс. В зависимости от вида неуравновешенности тела различают два вида балансировки: статическую и динамическую.

    Статическая балансировка .

    Статическая балансировка производится на стендах с призмами или роликами либо на специальных станках для статической балансировки в динамическом режиме (при вращении тела). Такая балансировка повышает точность балансировки и открывает возможность автоматизации процесса.

    Динамическая балансировка вращающихся деталей

    При такой балансировке определяются и устраняются (уменьшаются) два приведенных дисбаланса А и А в выбранных плоскостях коррекции путем удаления или добавления двух приведенных корректирующих масс, в общем случае разных по значению и расположенных под разными углами коррекции, в системе координат, связанной с осью детали. При динамической балансировке устраняется (уменьшается) как статическая, так и моментальная неуравновешенность, и изделие становится полностью сбалансированным.

    Допустимый дисбаланс деталей: коленчатого вала , карданного вала и.др.

    Балансировка деталей


    К атегория:

    Слесарно-механосборочные работы

    Балансировка деталей

    Неуравновешенность деталей выражается в том, что деталь, например шкив, посаженный на вал, шейки которого свободно вращаются в подшипниках, стремится после вращения остановиться в одном определенном положении. Это указывает на то, что в нижней части шкива сосредоточено большее количество металла, чем в его верхней части, т. е. центр тяжести шкива не совпадает с осью вращения.

    Ниже рассмотрен неуравновешенный диск, посаженный на вал, который вращается в подшипниках. Пусть его неуравновешенность относительно оси вращения выражается массой груза Р (темный кружок). Неуравновешенность диска заставляет его останавливаться всегда так, чтобы груз Р занимал самое низкое положение. Если к диску на противоположной стороне и на том же расстоянии от оси, что и темный кру-Жок, прикрепим груз такой же массы (заштрихованный кРУжок), то это уравновесит диск. В этом случае говорят, что Диск уравновешен относительно оси вращения.

    Рис. 1. Схемы определения неуравновешенности деталей: а - короткой, 6 - длинной, в - балансировка шкива на призмах, г - машина для динамической балансировки

    Рассмотрим деталь, у которой длина больше диаметра. Если ее уравновесить только относительно оси вращения, то возникает сила, которая стремится повернуть продольную ось детали против часовой стрелки и тем самым дополнительно нагружает подшипники. Чтобы избежать этого, уравновешивающий груз располагают на расстоянии от силы.

    Сила, с которой действует неуравновешенная вращающаяся масса, зависит от величины этой неуравновешенной массы, расстояния ее от оси, от квадрата числа оборотов ее. Следовательно, чем выше скорость вращения детали, тем сильнее оказывается ее неуравновешенность.

    При значительных скоростях вращения неуравновешенные детали вызывают вибрацию детали и машины в целом, в результате чего подшипники быстро изнашиваются, а в некоторых случаях машина может разрушиться. Поэтому детали машин, вращающиеся с большой скоростью, должны быть тщательно отбалансированы.

    Существует два вида балансировки: статическая и динамическая.

    Статическая балансировка может уравновешивать деталь относительно ее оси вращения, но не может устранить действие сил, стремящихся повернуть продольную ось изделия. Статическую балансировку производят на ножах или призмах, роликах. Ножи, призмы и ролики должны быть калеными и шлифованными и перед балансировкой выверены на горизонтальность.

    Операцию балансировки выполняют следующим образом. На ободе шкива предварительно наносят мелом черту. Вращение шкива повторяют 3 - 4 раза. Если меловая черта будет останавливаться в разных положениях, то это будет указывать на то, что шкив отбалансирован правильно. Если меловая черта каждый раз будет останавливаться в одном положении, то это значит, что часть шкива, находящаяся внизу, тяжелее противоположной. Чтобы устранить это, уменьшают массу тяжелой части высверливанием отверстий или увеличивают массу противоположной части обода шкива, высверлив отверстия, а затем залив их свинцом.

    Динамическая балансировка устраняет оба вида неуравновешенности. Динамической балансировке подвергают быстроходные детали со значительным отношением длины к диаметру (роторы турбин, генераторов, электродвигателей, быстровращающиеся шпиндели станков, коленчатые валы автомобильных и авиационных двигателей и т. д.).

    Динамическую балансировку производят на специальных станках высококвалифицированные рабочие. При динамической балансировке определяют величину и положение массы, которые нужно приложить к детали или отнять от нее, чтобы деталь оказалась уравновешенной статически и динамически.

    Центробежные силы и моменты инерции, вызванные вращением неуравновешенной детали, создают колебательные движения из-за упругой податливости опор. Причем колебания их пропорциональны величине неуравновешенных центробежных сил, действующих на опоры. На этом принципе основана балансировка деталей и сборочных единиц машин.

    Динамическая балансировка выполняется на электрических автоматизированных балансировочных станках. Они в интервале 1-2 мин выдают данные: глубину и диаметр сверления, массу грузов, размеры контргрузов и места, где необходимо закрепить и снять грузы. Кроме того, выполняется регистрация колебаний опор, на которых вращается уравновешенная сборочная единица, с точностью до 1 мм.

    Маховики, шкивы и различные летали, вращающиеся g большими окружными скоростями, должны быть уравновешенными (отбалансированными), иначе машины, в которые входят эти детали, будут работать с вибрациями. Это отрицательно сказывается на работе механизмов оборудования и машины в целом.

    Неуравновешенность деталей возникает из-за неоднородности материала, из которого они изготовляются; отклонений в размерах, допущенных при их изготовлении и ремонте; различных деформаций, полученных в результате термообработки; от различной массы крепежных деталей и т.д. Устранение неуравновешенности (дисбаланса) осуществляется балансировкой, которая является ответственной технологической операцией.

    Существуют два способа балансировки: статическая и динамическая. Статическая балансировка - это уравновешивание деталей в неподвижном состоянии на специальных приспособлениях - ножевых направляющих, роликах и др.

    Динамическая балансировка, предельно уменьшающая вибрации, производится при быстром вращении детали на специальных станках.

    Статической балансировке подвергают ряд деталей (шкивы, кольца, гребные винты и др.) На рис. 1, а изображен диск, центр тяжести которого находится на расстоянии е от геометрического центра О. При вращении образуется неуравновешенная центробежная сила Q.

    Опорные заостренные, чисто обработанные и закаленные поверхности ножей выверяют линейкой и уровнем на горизонтальность с точностью 0,05-0,1 мм на длине 1000 мм.

    Уравновешиваемую деталь надевают на оправку, концы которой должны быть одинакового, притом возможно меньшего диаметра. Это существенное условие повышения чувствительности балансировки без ущерба для жесткости установки оправки с деталью на ножах. Балансировка состоит в следующем: деталь с оправкой слегка подталкивают и дают ей возможность свободно остановиться, ее более тяжелая часть после остановки всегда займет нижнее положение.

    Балансируют деталь одним из двух способов: или облегчают ее тяжелую часть высверливанием или вырубанием из нее лишнего металла, либо утяжеляют диаметрально противоположную часть.

    Рис. 1. Схемы балансировки деталей:
    а - статическая, б - динамическая

    На рис. 1, б дана схема динамической неуравновешенности детали: центр тяжести может находиться далеко от ее середины, в точке А. Тогда при вращении на повышенной скорости масса дисбаланса будет создавать момент, опрокидывающий деталь, образуя вибрации и повышенные нагрузки на подшипнике. Для уравновешивания нужно установить добавочный груз в точке А’ (или высверлить массу дисбаланса в точке А). При этом масса дисбаланса и добавочного груза образуют пару центробежных сил, параллельных, но противоположно направленных - Q и - Q, с плечом L, при котором опрокидывающий момент ликвидируется (уравновешивается).

    Динамическую балансировку выполняют на специальных станках. Деталь устанавливают на упругие опоры и присоединяют к приводу. Частоту вращения доводят до такого значения, чтобы система вошла в резонанс, что позволяет заметить область колебаний. Для определения уравновешенной силы закрепляют на детали грузы, подбираемые так, чтобы образовалась противоположная сила и, следовательно, противоположно направленный момент.


    Статической балансировкой называют совмещение центра тяжести детали с её геометрической осью вращения. Это достигают снятием металла с тяжёлой части детали, или добавлением его путём наплавки на её лёгкую часть.
    Статической балансировке подвергают маховики, крылатки насосов, зубчатые колёса и шестерни зубчатых передач дизельных установок и т.д.
    Вращение деталей с неуравновешенной массой приводит к появлению центробежной силы или пары сил, которые и вызывают вибрацию механизма при его работе. Центробежная сила возникает при условии, что центр тяжести детали не совпадает с её осью вращения.
    Схема действия центробежной силы при смещении центра тяжести:

    Неуравновешенная центробежная сила создаёт на подшипниках дополнительные нагрузки, величина которых может быть определена по формулам:


    где Р1,Р2 — дополнительные нагрузки на подшипниках;
    а, в — расстояние от плоскости действия силы С соответственно до левого и правого подшипников, мм;
    l — расстояние между осями подшипников, мм.
    Величину центробежной силы можно определить через массу детали и величину смещения центра тяжести детали относительно оси её вращения по формуле:


    где G — масса детали, кг;
    q — ускорение силы тяжести (9,81 м/с2);
    w — угловая скорость (w = п на n / 30, где n — частота вращения, мин - 1);
    r — расстояние от центра тяжести до оси вращения детали, м.
    Например, центр тяжести «0» вращающегося диска массой 30 кг с частотой вращения 3000 мин - 1 смещён от центра оси на величину r = 1 мм. Тогда неуравновешенную центробежную силу получаем:

    то есть нагрузка на ось в 10 раз превышает массу самой детали. Из этого следует, что даже незначительное смещение центра тяжести может вызвать большие дополнительные нагрузки на подшипники.
    Статическую балансировку производят на специальных стендах. Основными деталями стенда являются ножи (призмы), валики или подшипники качения, на которых устанавливают балансируемую деталь на оправке. Ножи, валики или подшипники размещают в одной горизонтальной плоскости.
    Статическую балансировку деталей, работающих при частоте вращения до 1000 мин - 1, производят в один этап, а деталей, работающих при большей частоте вращения, — в два этапа.
    На первом этапе деталь уравновешивают до безразличного её состояния, то есть такого состояния, при котором деталь останавливается в любом положении. Это достигают путём определения положения тяжелой точки, а затем с противоположной стороны подбирают и крепят уравновешивающий груз. В качестве уравновешивающего груза используют кусок пластилина, замазки, мастики и т.д.
    После уравновешивания детали на её лёгкой стороне взамен временного груза крепят постоянный груз, или с тяжёлой стороны снимают соответствующее количество металла, схема установки временного и постоянного грузов представлена на рисунке:
    Схема установки временного (Р1) и постоянного (Р2) грузов:


    Б — тяжёлая точка.
    Иногда место установки уравновешивающего временного груза меняют, что сопровождается изменением радиуса его установки и, как следствие, изменением его массы. Величину массы постоянного уравновешивающего груза определяют из уравновешивания моментов:


    где Р1 — масса временного груза;
    Р2 — масса постоянного груза;
    R, r — радиусы установки соответственно временного и постоянного грузов.
    Для деталей с частотой вращения до 1000 мин - 1 балансировку на этом заканчивают.
    Второй этап балансировки заключается в устранении остаточной неуравновешенности (дисбаланса), оставшейся за счёт инерции детали и наличия трения между оправкой и опорами. Для этого поверхность торца детали делят на шесть-восемь равных частей, нумеруя их.
    Диаграмма статической балансировки детали:


    а — разметка окружности торца детали и места установки грузов; б — развёртка окружности и кривая балансировки.
    Затем деталь с временным грузом устанавливают так, чтобы точка 1 оказалась в горизонтальной плоскости. В этой точке крепят груз, увеличивая его массу до тех пор, пока деталь не выйдет из состояния равновесия (покоя) и не начнёт медленно вращаться. Груз снимают и взвешивают на весах.
    В такой же последовательности выполняют работу и для остальных точек детали. Полученные значения массы грузов заносят в таблицу:
    Значения массы грузов в точках их установки на детали (r ):


    По данным таблицы строят кривую, которая при точном выполнении балансировки должна иметь форму синусоиды. На этой кривой находят точки максимума (А макс) и минимума (А мин).
    Точке максимума кривой соответствует легкое место детали, а точке минимума — тяжёлое место детали.
    Массу уравновешивающего груза (дисбаланса) определяют по формуле:


    Статическая балансировка считается удовлетворительной, если:


    где К — масса дисбаланса детали, г;
    R — радиус установки временного груза, мм;
    G — масса балансируемой детали, кг;
    l ст — предельно допустимое смещение центра тяжести детали от оси её вращения, мкм.
    Предельно допустимое смещение центра тяжести детали находят по диаграмме предельно допустимых смещений центра тяжести у деталей при статической балансировке.
    Диаграмма предельно допустимых смещений центра тяжести деталей при статической балансировке:


    1 — для колёс зубчатых редукторов, дисков гидромуфт, гребных винтов с турбоприводом; 2 — гребные винты дизельных установок, маховики, крылатки центробежных насосов и вентиляторов.
    Если соблюдается условие уравнения, то процесс балансировки на этом заканчивается и груз дисбаланса на деталь не устанавливают. Если условие уравнения не соблюдается, то полученную массу грузика «К» устанавливают в точке А макс (радиус 2) или снимают в точке А мин (радиус 6).
    Качество балансировки деталей проверяют при работе дизеля по его вибрации.
Рассказать друзьям