Уширение колеи. Рельсовая колея на прямых и кривых участках пути. Выписка из Правил технической эксплуатации железных дорог Российской Федерации

💖 Нравится? Поделись с друзьями ссылкой

Рельсовая колея - это две рельсовые нити, установленные на определенном расстоянии одна от другой и прикрепленные к шпалам, брусьям или плитам. Устройство и содержание рельсовой колеи зависят от особенностей конструкции ходовых частей подвижного состава.

К ним относятся наличие у колес реборд (гребней), которые удерживают колеса на рельсах и направляют движение локомотивов и вагонов. Колеса наглухо запрессовываются на оси и образуют вместе с ней колесную пару. Оси колесных пар, объединенные общей жесткой рамой, всегда остаются взаимно параллельными.

Поверхность катания колес имеет не цилиндрическую, а коническую форму с уклоном в средней ее части в 1:20.

Расстояние между внутренними гранями колес называется насадкой T = 1440 мм с предельными допусками ± 3 мм.

Расстояние между крайними осями, закрепленными в раме одной тележки, называется жесткой базой.

Расстояние между крайними осями вагона или локомотива называется полной колесной базой данной единицы.

Так, полная колесная база электровоза ВЛ-8 составляет 24,2 м, жесткая база - 3,2 м.

Расстояние между рабочими гранями гребней колес называется шириной колесной пары.

Толщина гребней колесных пар должна быть не более 33 мм и не менее 25 мм. Чтобы колесная пара с самой широкой насадкой и неизношенными гребнями колес могла поместиться внутри колеи, ширина ее должна быть 1440 + 3 + 2×33 = 1509 мм, но при этом колесная пара будет зажата (заклинена) между рельсами.

Ширина колеи - это расстояние между внутренними гранями головок рельсов, измеряемое на уровне 13 мм ниже от поверхности катания. Ширина колеи на прямых участках пути и в кривых радиусом 350 м и более должна быть 1520 мм. На существующих линиях вплоть до их перевода на колею 1520 мм на прямых участках и в кривых радиусом более 650 м допускается ширина колеи 1524 мм. В кривых меньшего радиуса ширина колеи увеличивается согласно Правилам технической эксплуатации (ПТЭ).

Допуски по ширине колеи установлены по уширению плюс 8 мм, по сужению колеи минус 4мм, а на участках, где установлены скорости 50 км/ч и менее разрешены допуски +10 по уширению, -4 по сужению (ПТЭ ЦРБ-756.2000 г.). В пределах допусков ширина колеи должна изменяться плавно.

Подуклонка рельсов. В прямых участках пути рельсы устанавливают не вертикально, а с наклоном внутрь колеи, т. е. с подуклонкой для передачи давления от конических колес по оси рельса. Коничность колес обусловлена тем, что подвижной состав с такими колесными парами оказывает гораздо большее сопротивление горизонтальным силам, направленным поперек пути, чем цилиндрические колеса, уменьшается «виляние» подвижного состава и чувствительность к неисправностям пути.


Переменная коничность поверхности катания колес от 1:20 к 1:7 (рис.4.35) придается во избежание появления желобчатого износа колес и для плавного перехода с одного пути на другой через стрелочный перевод. Рельсовые нити должны находиться в одном уровне. Допускаемые отклонения от нормы зависят от скорости движения поездов.

Ðèñ. 4.35. Òèïîâîé ïîïåðå÷íûé ïðîôèëü áàëëàñòíîé ïðèçìû íà ëèíèè Ñàíêò-Ïåòåðáóðã - Ìîñêâà: 1 - î÷èùåííûé ùåáåíü; 2 - ñëîé, ýêñòðóäèðîâàííûé

ïåíîïîëèñòèðîëîì òîëùèíîé 40 ìì

На длинных прямых разрешается содержать одну рельсовую нить постоянно на 6 мм выше другой. При таком положении рельсовых нитей колеса будут слегка прижаты к пониженной рихтовочной нити и двигаться более плавно. На двухпутных участках рихтовочной является междупутная нить, а на однопутных участках, как правило - правая по ходу километров.

Работа пути в кривых участках сложнее, чем в прямых , т.к. при движении подвижного состава по кривым появляются дополнительные боковые силы, например, центробежная сила. К особенностям устройства колеи в кривых относятся: увеличение ширины колеи в кривых малых радиусов, возвышение наружной рельсовой нити над внутренней, соединение прямых участков с круговыми кривыми посредством переходных кривых, укладка укороченных рельсов на внутренней нити кривой. На двухпутных линиях в кривых увеличивается расстояние между осями путей. Уширение колеи на кривых участках наших дорог делается при радиусах менее 350 м.

Необходимость уширения вызывается тем, что включенные в общую жесткую раму колесные пары, сохраняя параллельность своих осей, затрудняют прохождение тележек подвижного состава по кривым. При отсутствии уширения исчезает необходимый зазор между гребнями колес и рельсом и наступает недопустимое заклиненное прохождение подвижного состава. При этом возникает большое сопротивление движению поезда, а также дополнительный износ рельсов и колес, не обеспечивается безопасность движения.

Чем меньше радиус кривой и чем больше жесткая база, тем шире должна быть колея.

Возвышение наружного рельса. При движении экипажа по кривой возникает центробежная сила, направленная наружу кривой. Эта сила создает дополнительное воздействие колеса на наружную рельсовую нить, сильно изнашивая рельсы этой нити. Если в кривой установить обе рельсовые нити на одном уровне, то равнодействующая центробежной силы и силы веса будет отклоняться к наружному рельсу, перегружая его и соответственно разгружая внутренний рельс. Для того чтобы снизить боковое давление на рельсы наружной нити, уменьшить их перегрузку, добиться равномерности износа рельсов обеих нитей и избавить пассажиров от неприятных ощущений, устраивают возвышение наружного рельса h (рис. 4.36).

Ðèñ. 4.36. Ñõåìà äåéñòâóþùèõ ñèë ïðè óñòðîéñòâå âîçâûøåíèÿ íàðóæíîãî ðåëüñà â êðèâûõ

В этом случае экипаж наклоняется к центру кривой, часть силы веса H будет направлена внутрь кривой, т.е. в сторону, противоположную действию центробежной силы. Следовательно, наклон экипажа за счет устройства возвышения наружного рельса уравновешивает центробежную силу. Это выравнивает воздействие на оба рельса.

При радиусах кривых 4000 м и менее делают возвышение наружной рельсовой нити, которое может быть от 10 до 150 мм. Это возвышение зависит от скоростей движения поездов, массы их брутто и суточного количества поездов на рассматриваемой кривой и радиуса кривой. Отвод возвышения наружного рельса, т.е. постепенное снижение повышенной наружной нити до нуля, делается плавно. Отклонение расчетного возвышения по уровню допускается в зависимости от скорости движения поездов.

Переходные кривые . Для плавного вписывания подвижного состава в кривые между прямым участком и круговой кривой устраивается переходная кривая, радиус которой постепенно уменьшается от бесконечно большой величины в месте примыкания ее к прямому участку до радиуса R в точке, где начинается круговая кривая. Необходимость вставки переходных кривых вызвана следующим. Если поезд с прямого участка пути войдет в круговую кривую, где сразу изменится радиус кривизны с ¥ до R, то на него мгновенно действует центробежная сила. При большой скорости подвижной состав и путь будут испытывать сильное боковое давление и быстро изнашиваться. При устройстве переходных кривых радиус медленно уменьшается, соответственно медленно нарастает и центробежная сила - резкого бокового давления на поезд и путь не произойдет. На железных дорогах РФ переходные кривые строят по радиоидальной спирали, т.е. применяют кривую с переменным радиусом кривизны. Их принимают стандартной длины от 20 до 200 м.

В пределах переходных кривых плавно отводят возвышение наружного рельса и уширение колеи, устраиваемые в круговых кривых, а также делают уширение междупутья.

Для разбивки переходных и следующих за ним круговых кривых, то есть для разметки их положения на местности, имеются специальные таблицы.

Укладка укороченных рельсов в кривых. Внутренняя рельсовая нить в кривой короче наружной. Если по внутренней нити кривой укладывать все рельсы такой же длины, как и по наружной, то стыки по внутренней нити станут забегать вперед относительно стыков на наружной нити и не получится расположения их по наугольнику, как это принято на нашей сети. Для устранения большого забега стыков в кривой по внутренней нити укладывают рельсы укороченной длины. Применяют три типа укорочения рельсов: на 40, 80 и 120 мм для рельсов 12,5 м и на 80 и 160 мм для рельсов 25 м. Большие укорочения применяются на крутых кривых. Укладку укороченных рельсов чередуют с рельсами нормальной длины так, чтобы забег или недобег стыков не превышал половины стандартного укорочения, т.е. соответственно 20; 40; 60 и 80 мм. При эксплуатации пути забег или недобег стыков допускается в кривых – 8см плюс половина стандартного укорочения рельса в данной кривой.

0

Рельсовые скрепления. Противоугоны

Рельсовый путь - две непрерывные рельсовые нити, расположенные на определённом расстоянии друг от друга. Это обеспечивается за счёт крепления рельсов к шпалам и отдельных рельсовых звеньев между собой.

Рельсовые скрепления подразделяются на промежуточные и стыковые.

Промежуточные скрепления должны обеспечивать надёжную и достаточно упругую связь рельсов со шпалами, сохранять постоянство ширины колеи и необходимую подуклонку рельсов, не допускать продольного смещения и опрокидывания рельсов.

Промежуточные скрепления подразделяются на три основных вида: нераздельные, смешанные и раздельные.

Нераздельное скрепление (костыльные) - рельс и подкладки на которые он опирается, крепятся к шпалам одними и теми же костылями (три), в соответствии с рисунком 1а

Рисунок 1 Промежуточные костыльные скрепления для деревянных шпал: а - нераздельное; б - смешанное; 1 - рельс; 2 - костыль; 3 -подкладка; 4 - шпала.

Смешанное скрепление (ДО) - (костыльные) подкладки крепятся к шпалам дополнительными костылями (пять), рисунок 1 б.

Его преимущество - простота конструкции, небольшая масса, лёгкость заливки, перезашивки и разборки пути.

Недостатком является - не гарантирует постоянство ширины колеи, способствует износу шпал, плохо сопротивляются угону пути.

В скреплении ДО основные костыли удерживают рельс от бокового сдвига, и опрокидывания, а обшивочные - уменьшают сдвиг подкладки под действием горизонтальных сил и вибрацию подкладок. Клинчатая подкладка обеспечивается подуклонку рельсов.

Раздельные скрепления (клемные) КД - рельс крепится к подкладкам жесткими или упругими клеммами и клемными болтами, подкладки к шпалам - болтами или шурупами в соответствии с рисунком 2.

Рисунок 2 Промежуточное раздельное скрепление для деревянных шпал: 1 - прокладка; 2 - подкладка; 3 - шуруп; 4 - клемма; 5 - двухвитковая шайба; 6 - гайка; 7 - клеммный болт.

В этих скреплениях подкладки надолго прикрепляются к шпалам шурупами, а рельс постоянно прижат клеммами к подкладкам.

Преимущество этих креплений - отсутствие большой вибрации подкладок, сопротивление угону рельсов и возможность смены рельсов без вывертывания шурупов.

Для пути с железобетонными шпалами применяют клемные скрепления типов КБ, КБ65 с прутковой клеммой, ЖБР-65, БПУ, в соответствии с рисунком 3

Рисунок 3 Скрепление КБ-65 с прутковой клеммой: 1 - клемма; 2 -шайба; 3, 8 - прокладки; 4 - подкладка; 5 - двухвитковая шайба; 6 -изолирующая втулка; 7 - скоба для изолирующей втулки

В массовом порядке применяют скрепление КБ, у которого плоская прокладка прикрепляются к шпале закладными болтами.

Соединение рельсовых звеньев между собой осуществляется с помощью стыковых скреплений.

Стыковые скрепления прочно соединяют рельсы в непрерывную нить. Места соединения называют рельсовыми стыками. Концы рельсов перекрываются накладками, которые через отверстия стягивают болтами. Под гайки болтов ставят пружинные или тарельчатые шайбы, в соответствии с рисунком 4

Рисунок 4 Рельсовый стык: 1 - костыль; 2 - подкладка; 3 - болт; 4 -накладка; 5 - рельс; 6 - шайба; 7 - гайка.

Стыковые накладки предназначены для соединения рельсов и восприятия в стыке изгибающих и поперечных сил. Двухголовые накладки изготавливают из высокопрочной стали и подвергают закалке. В последнее время переходят на применение шестидырных накладок.

По расположению относительно шпал различают стыки на весу, на шпалах и на сдвоенных шпалах. В качестве стандартных приняты стыки на весу рисунок 4, обеспечивающие большую упругость и удобство подбивки балласта под стыковые шпалы. Торцы рельсов соединены посредине между двумя стыковыми шпалами а стыки обеих рельсовых нитей расположены один против другого - по наугольнику.

Между торцами рельсов в стыках оставляют зазор, так как с изменением температуры длина рельсов меняется. Во избежание сильных ударов колёс подвижного состава зазор не должен превышать 21мм. Каждой температуре рельсов соответствует определённый стыковой зазор.

lз=γ(tmax - t),

где γ - коэффициент линейного расширения стали lp - длина рельсов в м.

tmax, t - соответственно наибольшая температура в данной местности и температура в момент укладки рельса.

На линиях с автоблокировкой на границах блок-участков устраивают изолирующие стыки, чтобы электрический ток не мог пройти от одного из соединяемых рельсов к другому. Существует два типа изолирующих стыков: с металлическими объёмляющими накладками и клееболтовые, в соответствии с рисунком 5

Рисунок 5 Поперечный разрез изолирующего стыка: а - с объёмляющими металлическими накладками; б - клееболтового; 1-рельс; 2 - накладка; 3 - прокладка боковая; 4 - планка из фибры или полиэтилена под болты; 5 - стопорная планка; 6 - втулка; 7 -изолирующая прокладка нижняя; 8 - подкладка; 9 - болт стыковой; 10 -гайка; 11 - шайба; 12 - изоляция из стеклоткани, пропитанной эпоксидным клеем; 13 - изоляция на болте.

В первом случае изоляцию обеспечивают постановкой прокладок и втулок из фибры, текстолита, или полиэтилена. В стыковом зазоре также ставятся прокладки из текстолита или трикола, имеющие очертание рельса.

Во втором случае применяются клееболтовые стыки, в которых металлические стыковые накладки, изолирующие прокладки из стеклоткани и болты с изолирующими втулками склеиваются эпоксидным клеем с концами рельсов в монолитную конструкцию.

На линиях с электрической тягой и автоблокировкой для беспрепятственного прохождения через стык тока ставят специальные стыковые соединители.

Под действием сил, которые создаются при движении поездов под рельсам (волнообразный изгиб рельсов под поездом, трение между колёсами и рельсами, удары колёс в стык, торможение поездов) может происходить продольное перемещение рельсов по шпалам или вместе со шпалами по балласту, называемое углом пути.

На двухпутных участках угон происходит по направлению движения, а на однопутных - угон бывает двусторонний.

Наилучший способ предотвращения угона пути - это применение щебёночного балласта и раздельных промежуточных скреплений, которые обеспечивают достаточное сопротивление продольному перемещению рельсов и не требует дополнительных средств закрепления.

При нераздельном и смешанном скреплениях применяют пружинные противоугоны - это пружинные скобы, закрепляемые на подошве рельса и упирающего в шпалу, в соответствии с рисунком 6

Рисунок 6 Пружинный противоугон

На звено длиной 25м ставят от 18 до 44 пар в зависимости от грузонапряжённости, вида балласта и условий движения поездов.

Бесстыковой путь

Бесстыковой путь по сравнению со звеньевым более прогрессивный. Отсутствие стыков в рельсовых плетях снижает динамическое воздействие на путь, уменьшает износ колёс подвижного состава, улучшает плавность движения поездов, продлевает срок службы верхнего строения пути, снижает расходы на содержание пути и др.

Сокращение числа стыков за счёт сварки отдельных звеньев в плети даёт экономию до 1, 8т на 1км.

Особенностью бесстыкового пути заключается в том, что хорошо закреплённые рельсовые плети при повышении или понижении температуры не могут изменить свою длину, кроме небольших перемещений концевых частей. В рельсах возникают продольные растягивающие и сжимающие силы до 2, 5мПа, которые в жаркую погоду могут привести к выбросу пути в сторону, а в сильный мороз - к излому плети с образованием опасного зазора. Поэтому бесстыковый путь укладывается на железобетонных шпалах с раздельным скреплением и щебеночном балласте. Балластную призму тщательно уплотняют.

Плети сваривают из термически упрочнённых рельсов Р65 или Р75 без болтовых отверстий. Сваривают рельсы электроконтактным способом на стационарных или передвижных контактно-сварочных машинах. Длина рельсовых плетей зависит от расположения изолирующих стыков, больших металлических мостов, переездов, стрелочных переводов и др. И как правило равна 950м., что соответствующий длине составов специальных поездов из платформ оборудованных роликами, которыми плети доставляются на перегон.

На искусственных сооружениях с мостовым полотном на балласте бесстыковой путь укладывают без ограничений; на металлических местах с мостовыми брусьями - по проекту. Концы плетей должны быть за пределами шкафной стенки устоя на расстоянии 50-100м. При колебании температура возможна изменения длины концевых участков плетей. Для того, чтобы это изменение длины было возможно, между смежными плетями укладывают уравнительные рельсы, образующие уравнительный проект (две или три пары рельсов длиной 12, 5м). В конце блок-участка при автоблокировке в зоне уравнительных рельсов размещают изолирующий стык по схеме, в соответствии с рисунком 7

Рисунок 7 Плеть бесстыкового пути: 1 - изолирующий стык; 2 -плеть; 3 - уравнительные рельсы.

Укладка уравнительных рельсов обеспечивает также проведение в случае необходимости разрядки температурных напряжений в плетях при ремонтных и др. работах. Для этого ослабляют скрепление плетней со шпалами, предварительно снимая уравнительные рельсы. В результате плеть укорачивается или удлиняется. После этого плеть закрепляют и укладывают уравнительные рельсы нужной длины. Чем длиннее плети, тем очевиднее преимущества бесстыкового пути. На ряде дорог имеется опыт укладки плетей длиной в блок-участок и даже на целый перегон. За рубежом есть плети длиной 30-40км, когда пути перегона, стрелочные переводы и станционные пути сварены в единое целое.

Устройство рельсовой колеи на прямых участках

Устройство рельсовой колеи связано с конструкцией и размерами колёсных пар подвижного состава.

Колёсная пара состоит из стальной оси, на которую наглухо насажены колёса, имеющие для предотвращения схода с рельсов напрающие гребни (реборды), в соответствии с рисунком 8

Рисунок 8 Колёсная пара на рельсовой колее

Поверхность катания колёс в средней части имеет коничность 1/20, которая обеспечивает более равномерный износ, большое сопротивление горизонтальным силам, направленным поперёк пути, меньшую чувственность к неисправностям его и препятствующей появлению желоба на поверхности катания, затрудняющего прохождение колёсных пар по стрелочным переводам.

Рельсы устанавливаются также с подуклонкой 1/20 во внутрь на прямых участках за счёт клинчатой подкладки при деревянных шкалах, а при железобетонных - соответствующим наклоном поверхности шпал.

Расстояние между внутренними гранями головок рельсов называется шириной колеи. Эта ширина складывается из расстояния между колёсами (1440±3мм), двух толщин гребней (от 25 до 33мм) и зазоров между колёсами и рельсами.

Ширина колеи в прямых и кривых участках пути с радиусом 349м и более принята 1520мм с допусками в сторону уширения 6мм и в сторону сужения 4мм.

В соответствии с ПТЭ верх головок рельсов обеих нитей на прямых участках должен быть в одном уровне.

Разрешается на прямых участках пути содержать одну рельсовую нить на 6 мм. выше другой в соответствии с нормами установленной соответствующей инструкцией МПС России.

Стыки на обеих рельсовых нитях располагают строго один против другого по наугольнику.

Чтобы колёсная пара не могла поворачиваться вокруг вертикальной оси колёсные пары вагонов и локомотивов соединяют жесткой рамой (по две и более).

Расстояние между крайними осями соединёнными рамой называется жёсткой базой, а между крайними осями вагона или локомотива - полной колёсной базой, соответственно с рисунком 9

Рисунок 9 Жесткая и полная колёсные базы:

а - электровоза ВЛ 80; б - одной секции тепловоза ТЭ3; в -в паровоза серии ФД; г - четырёхосного полувагона.

Жёсткое соединение колёсных пар обеспечивает устойчивое положение на рельсах, но затрудняет прохождение в кривых малого радиуса (заклинивание).

Для облегчения вписывания в кривые подвижной состав выпускают на отдельных тележках с небольшими жесткими базами.

Устройство пути на мостах и в тоннелях

На металлических мостах рельсовый путь делают без балласта на деревянных или железобетонных брусьях или плитах.

Брусья крепят болтами к продольным балкам. Для удержания подвижного состава в случае схода его с рельсов снаружи колеи ставятся охранные брусья или уголки, а внутри контррельсы или уголки, в соответствии с рисунком 10, 11.

Рисунок 10 Мостовое полотно на деревянных поперечинах с раздельными клеммно-шурупными креплением рельсов: I - охранный уголок прикреплён лапчатым болтом; II - охранный уголок прикреплён шурупами; в скобах даны минимальные зазоры, мм.

Рисунок 11 Безбалластное мостовое полотно на железобетонных плитах: 1 - контруголок; 2 - рельс; 3 - железобетонная плита; 4 - высокопрочная шпилька крепления плиты; 5 - цементно-песчаная заливка (монтажная деревянная прокладка омоноличена); 6 - арматурная сетка.

На каменных, бетонных и железобетонных местах и путепроводах путь имеет обычную конструкцию, и укладывается на щебёночный балласт и обычные шпалы.

Устройство пути в кривых участках пути

Железнодорожный путь в кривых участках работает сложнее, чем на прямых, так как при движении подвижного состава появляется дополнительно центробежные силы. К особенностям устройства такого пути относятся: возвышение наружного рельса над внутренним, наличие переходных кривых, уширение колеи при малых радиусах, укладка укороченных рельсов на внутренней рельсовой нити, усиление пути, увеличение расстояний между осями путей на двух и многопутных линиях.

Возвышение наружного рельса

Возвышение наружного рельса предусматривается при радиусе кривой 4000м и менее, чтобы нагрузка на каждую рельсовую нить была примерно одинакова. Такое возвышение может быть от 10 до 150мм.

Рисунок12 Схема сил, действующих на подвижной состав в кривой при возвышении наружного рельса.

При возвышении наружного рельса на величину h появляется составляющая сила веса H направленная внутрь кривой, в соответствии с рисунком 12

Для одинакового давления на рельсовые нити необходимо, чтобы H уравновешивало I, тогда равнодействующая N будет перпендикулярна наклонной плоскости пути.

Учитывая что угол а мал и при максимальном допустимом возвышении наружного рельса 150 мм cosa=0, 996, можно принять, что Н=I.

g=9, 81 м / сек 2 и выражая скорость V в км/ч, а радиус R в м получим возвышение в мм.

Поскольку в реальных условиях по кривым проходят поезда разной массы Qi и с различными скоростями Vi, то для равномерного износа рельсов в приведённую формулу подставляют среднюю квадратическую скорость.

При h=12, 5 V 2 /R, в поездах следующих со скоростью выше Vср на пассажиров и грузы будет действовать непогашенное ускорение, равное разнице между центробежным ускорением V 2 /R и направленным к центру кривой ускорением gh/Si

Допускаемое непогашенное ускорение на дорогах России допускается 0,7 м/с 2 и лишь в исключительных случаях 0,9 м/с 2 .

При движении поездов со скоростью менее Vср нагрузка на внутренний рельс будет больше, чем наружный.

Устройство переходных кривых необходимо для плавного вписывания подвижного состава в кривые между прямым участком и круговой кривой, радиус которой постепенно уменьшается от да до радиуса R кривой (от 20 до 200м). Если поезд с прямого участка пути войдёт в круговую кривую, где сразу изменится радиус кривизны с да до R, то на него мгновенно действует центробежная сила. При большой скорости подвижной состав и путь будут испытывать сильное боковое давление и быстро изнашиваться.

Переходная кривая в плане рисунок 13 представляет собой кривую переменного радиуса, уменьшающего от бесконечно большего до

R - радиуса круговой кривой с уменьшением кривизны пропорционально изменению длины. Кривая, обладающая таким свойством, представляет собой радиоидальную спираль, управление которой выражается в виде ряда.

где с - параметр переходной кривой (с=lR)

В связи с тем, что длина переходной кривой l мала по сравнению с С, практически достаточно ограничиться двумя первыми числами-члена ряда приведённой формулы.

В профиле переходная кривая в обычных условиях представляет собой наклонную линию с однообразным уклоном i=h/l.

Уширение колеи необходимо для обеспечения вписывания подвижного состава в кривые.

В пределах жёсткой базы колёсные пары всегда параллельны между собой и в тележке только одна колёсная пара может расположиться по радиусу, а остальные будут находиться под углом. Во избежание заклинивания колёсных пар необходимо уширение колеи, рисунок 13

Рисунок 13 Схема свободного вписывания в кривую двухосной тележки

Для свободного вписывания двухосной тележки в кривую необходимая ширина колеи

Sс =qmax+fn +4

где fn - стрела изгиба кривой по наружной нити при хорде 2λ qmax - максимальное расстояние между наружными гранями гребней колёс

4 - допуск по сужению колёс, мм.

Установлены следующие нормы ширины колеи в кривых: при Я≥350м - 1520мм при R=349: 300м - 1530мм при R≤299м - 1535мм

Укладка укороченных рельсов во внутреннюю нить необходима для исключения разбежки стыков. Внутренняя рельсовая нить в кривой короче наружной. Поэтому для устранения забегания стыков вперёд при каждом радиусе кривой необходимо иметь свою величину укорочения рельсов. Применяют стандартные укорочения рельсовых звеньев на 40, 80, 120 мм - для рельсов 12, 5м на 80, 160 - для рельсов 25м.

Общее число укороченных рельсов n, требующихся для укладки в кривой

где ε - общее укорочение

k - стандартное укорочение одного рельса

Укладку укороченных рельсов во внутренней нити чередуют с укладкой рельсов с нормальной так, чтобы забег стыков не превышал половины укорочения, т. е. 20, 40, 60 и 80мм.

При эксплуатации пути забег или недобег стыков допускается в кривых - 8см плюс половина стандартного укорочения рельса в данной кривой.

Усиление пути в кривых производится при R≤1200м для обеспечения необходимой равнопрочности с примыкающими прямыми. Для этого увеличивают число шпал на километр, уширяют балластную призму с наружной стороны кривой, ставят несимметричные подкладки с большим плечом в наружную сторону, отбирают наиболее твёрдые рельсы.

В круговых кривых на двух и многопутных линиях увеличивается расстояние между осями путей в соответствии с требованиями габарита, что достигается в пределах переходной кривой внутреннего пути за счёт изменения её параметра С.

Используемая литература: Воронков А.И.
Общий курс железных дорог. Тексты лекций:
Учебное пособие - Оренбург: Сам ГУ ПС, 2009.

Схемы вписывания экипажа в кривых. Движение тележки экипажа с постоянной скоростью по круговой кривой вызывает поворот ее (вращение) относительно центра этой кривой, т.е. такое движение можно рассматривать состоящим из поступательного, совершаемого по направлению продольной оси жесткой базы экипажа, и поворота ее относительно некоторой точки 0, называемой центром (полюсом) поворота, за который принимают точку на пересечении продольной оси жесткой базы тележки с радиусом, к ней перпендикулярным (или радиусом-перпендикуляром).

В зависимости от соотношения размеров рельсовой колеи и колесной пары, сил, приложенных к экипажу, радиуса кривой и скорости движения могут быть различные схемы вписывания (установки) экипажа в кривых. Можно выделить заклиненную и незаклиненную. Незаклиненное вписывание в свою очередь делится на принудительное и свободное.

Заклиненная схема имеет место при минимальной теоретически возможной ширине колеи для данного экипажа, когда при выбранных разбегах осей экипаж не имеет возможности перемещаться в поперечном направлении в рельсовой колее (рис. 7.8, а). У двухосных и трехосных тележек при заклиненном вписывании возникают силы между колесом и рельсом для крайних осей тележки по наружным рельсовым нитям. Третья сила возникает по внутренней нити для задней оси тележки при двухосной конструкции и для средней оси при трехосной. При заклиненном вписывании в силу такой установки колес по наружной нити полюс вращения 0 находится посередине жесткой базы 1 жб.

Незаклиненная схема вписывания возникает, когда жесткая база экипажа имеет возможность перемещаться в поперечном направлении за счет свободных зазоров или разбега колесных пар. Центр поворота О при этом смещен к задней оси.

При возникновении поперечных сил в первой оси по наружной нити и в задней оси по внутренней наблюдается принудительное вписывание (рис. 7.8, б); если же последняя сила равна нулю, то такое вписывание называется свободным (рис. 7.8, в).

Рис. 7.8. Схемы вписывания жестких баз экипажей в кривые: а - заклиненное; б - принудительное; в - свободное («$=- точка контакта гребня колеса и рельса); стрелкой показаны направляющие усилия

Заклиненное вписывание в эксплуатации не допускается, так как приводит к очень большому сопротивлению движению (большое трение гребней колес по боковым граням головки рельсов), боковому износу рельсов и гребней колес.

При движении многоосных экипажей с большой жесткой базой, для обеспечения незакли- ненного прохода колес требуется производить уширение рельсовой колеи.

Ширина колеи в кривых. За расчетную схему определения ширины колеи в кривых принимают схему заклиненного вписывания железнодорожного экипажа, при которой наружные колеса крайних осей жесткой базы своими ребордами упираются в наружный рельс кривой, а внутренние колеса средних осей упираются во внутренний рельс. Центр поворота экипажа, как рассмотрено выше, находится посередине жесткой базы (двухосные жесткие базы, многоосные жесткие базы с симметричным расположением осей и их разбегов). К полученной на основании такой расчетной схемы ширине колеи (приводящей к заклиненному вписыванию) следует добавить некоторую величину, в качестве которой принимают величину минимального зазора 5 min между боковыми рабочими гранями рельсов и гребнями колес на прямом участке. Тем самым удается избежать заклиненного вписывания.

Рассмотрим случай определения минимально необходимой ширины рельсовой колеи S из условия вписывания трехосной тележки с жесткой базой Т жб в кривую радиусом R (рис. 7.9). Эта схема выбрана потому, что в настоящее время на дорогах РФ наиболее длинную базу имеет тележка трехосного локомотива.


Рис. 7.9.

Введем обозначения:

О - центр поворота жесткой базы экипажа; при симметричной тележке центр поворота лежит на оси средней колесной пары; q - ширина колесной пары;

/ - расстояние от центра поворота до точки гребня первого колеса, упирающегося во внешний рельс;

/-стрела изгиба наружного рельса, отсчитываемая от хорды, проходящей через точку контакта колеса и рельса; / = -;

  • ?у- сумма поперечных разбегов осей.

Запишем выражение для ширины колеи при заклиненном впи- сывании 5 закл:

Но из рассмотрения схемы для прямого участка пути (7.2) следует

Величина стрелы z определится с учетом (см. рис. 7.9), что приближенно /» 0,5/, жб:

Если величина 8 по расчету больше нуля, то необходимо провести уширение колеи.

Из двух последних выражений видно, что принципиально ширина колеи в кривых должна быть больше, чем в прямых. Следует также, что чем больше жесткая база и меньше радиус кривой, тем большее уширение требуется устраивать, чем больше разбеги колесных пар, тем меньше потребное уширение.

Из выражения для величины уширения (7.16) можно определить тот радиус кривой, при котором возникает заклиненное вписывание.

Приняв 8 = 0, получим


Например, при /, жб = 4,6 м, 5 = 7 мм, =0 величина R = 378 м.

Уширение при современном подвижном составе начинают с радиуса круче 350 м по следующим нормативам: при радиусе от 349 м до 300 м - на 10 мм, а при радиусе менее 299 м - 15 мм.

В случае незаклиненной схемы положение центра поворота не может быть определено однозначно только геометрически, как в случае заклиненного вписывания. В связи с этим необходимо определение поперечных сил и центра поворота при вписывании жесткой базы экипажа в кривую.

Непрерывное вращение экипажа относительно центра поворота происходит под действием сил, возникающих в точках соприкосновения гребней колес направляющих осей с боковой гранью головки рельсов. Это направляющие силы Г(рис. 7.10).

В контактах колес с рельсами возникают силы трения, равные произведению сил, перпендикулярных плоскости касания колес и рельсов на коэффициент трения скольжения/Р { . На рис. 7.10 вместо этих сил показаны равные им по значению и обратные по знаку реакции рельсов. Поперечные составляющие сил трения обозначены Н/, а продольные - V f .

Алгебраическую сумму нажатия гребня Y и силы трения Н одного и того же колеса называют боковой силой:

При расположении колесной пары впереди центра поворота жесткой базы для наружного колеса в формуле (7.18) следует брать разность и для внутреннего - сумму сил; при обратном расположении - колесная пара находится сзади центра поворота, знаки тоже берутся обратными.

Направляющие силы (см. рис. 7.10) принято считать положительными, если они направлены наружу колеи, а соответствующие им реакции рельсовых нитей - внутрь колеи. Боковые силы принято считать положительными, если они действуют в сторону направляющих сил, а соответствующие им реакции рельсовых нитей - в обратном направлении.

Вписывание свободное, если при вписывании экипажа появляются направляющие силы на наружной нити в контакте с первым по ходу движения колесом Y H и отсутствуют на внутренней нити У в.

Поперечная сила, передаваемая рамой экипажа через колесную пару на рельсы называется рамной силой У р. Эта сила считается приложенной к геометрической оси колесной пары и положительной, если она направлена наружу кривой, равна разности боковых сил, передаваемых одной и той же осью на наружную и внутреннюю рельсовые нити:

Для первой направляющей оси


Рис. 7.10.

Подставляя эти значения в формулу (7.19), получим

При Щ_ н = #!_ в =fP найдем Г=У,-2fP.

Боковые силы Г б, возникающие при движении экипажей, достигают больших значений (иногда 100 кН и более). Влияние боковых сил на работу пути очень велико. Этим объясняется ряд мер, направленных на улучшение вписывания экипажей в кривые и снижающих поперечные силы.

При известных положениях центра (полюса) поворота О экипажа (см. рис. 7.10), ширине колеи (измеренной между осями головок рельсов) и расстояниях /, от центра О до любой /- й колесной пары становится известным направление перемещения каждого колеса. Это направление перпендикулярно радиусу - вектор d t , проведенному от центра О к середине площадки контакта колеса с рельсом, приблизительно к точке пересечения оси головки рельса с геометрической осью колесной пары.

Сила трения каждого колеса (наружного, внутреннего) любой /-й оси направлена в сторону, обратную перемещению колеса. Поперечные и продольные V f составляющие этой силы определяются из следующих выражений:

Все поперечные силы: трения Щ Т, направляющие V i считаются приложенными не радиально, а перпендикулярно продольной оси экипажа.

Сила Т, приложенная на расстоянии от первой оси тележки, представляет собой равнодействующую центробежной составляющей веса экипажа (приходящегося на одну тележку), образующейся в связи с возвышением наружного рельса, и нормальной составляющей силы тяги, приходящейся на одну тележку:

где а н - непогашенное поперечное ускорение;

к т - количество тележек в экипаже;

L u - длина поезда;

L x - длина хвостовой части поезда, считая от середины экипажа, вписывание которого рассматривается;

L c - длина рассматриваемого экипажа между осями сцепления автосцепок;

F K - сила тяги, развиваемая локомотивом на кривой (при толкании или локомотивном торможении F K берется со знаком минус; при толкании Ь х - длина головной части).

В свою очередь

где v - скорость движения поезда;

И - возвышение наружного рельса.

Демпфирующий момент М, образованный силами трения в шкворне и скользунах, зависит от загрузки вагона и положения груза относительно продольной оси вагона. Он оказывает сопротивление в кривой повороту первой тележки (см. рис. 7.10) относительно кузова, который, поворачиваясь, увлекает за собой вторую тележку, способствуя ее повороту. Следовательно, знаки М д демпфирующего момента у первой и второй тележек будут разные.

Для определения демпфирующего момента А/ д обозначим: коэффициенты трения скольжения в шкворне - через ц шк, в скользунах - через ц ск (значения этих коэффициентов находятся в границах 0,1-0,2); давления на шкворень и скользуны каждой тележки - через Q lUK и Q CK ; расчетный радиус поворота тележки относительно кузова на шкворне - через г ШК, на скользунах - через г СК. Тогда:

Нормальным положением кузова на шкворневых тележках является его опирание на шкворни, на каждый из которых приходится половина веса кузова: Q CK = 0 и (2 ШК = 0,5(2 куз. При большом крене часть нагрузки может передаваться на скользуны, например,

Вертикальное давление на тележки КВЗ-ЦНИИ передается только через скользуны. В этом случае?) шк = 0; Q CK = 0,5 Q Ky3 -

Для нахождения направляющих сил Fj_ H и F 3 _ B составим два уравнения моментов: одно относительно середины С j первой оси и второе - относительно середины С 3 задней оси. Выполнив необходимые промежуточные преобразования, получим:


Если средняя ось имеет достаточные поперечные разбеги, чтобы переместиться на нужную величину, то следует в выражениях для А и В члены с множителем (/ 2 /^/ 2) считать равными нулю, так как отсутствуют поперечные составляющие # 2 _ н и # 2 _ в сил т Р ения - Вместо члена /d 2 следует написать 2/5] в связи с тем, что в этом случае V 2 =fP. Верхние знаки при А/ д относятся к передней тележке, нижние - к задней. В случае двухосной тележки в формулах (7.22) выпадают члены, содержащие / 2 и d 2 . Формулы верны при любом расположении полюса поворота.

От полюсного расстояния /| зависят лишь функции А и В. При заданной ширине колеи величина /, зависит от сил взаимодействия экипажа и колеи и не может рассматриваться независимой до тех пор, пока внутреннее колесо задней оси не дойдет своим гребнем до внутренней нити. Как только это колесо коснется и начнет прижиматься гребнем к этой нити (при заданной ширине колеи), значение /, становится неизменным и не зависящим от силовых взаимодействий экипажа и колеи.

Если известен зазор в колее 5, полюсное расстояние /j определяется зависимостью

Здесь 5 определяется с учетом разбегов по первой и последней осям экипажа.

В случае если ширина колеи подлежит определению (как в данном случае), то ее всегда можно задать такой, чтобы при любых значениях действующих сил колесо задней оси, катящееся по внутренней нити, касалось или прижималось своим гребнем к этой нити, т.е. чтобы выполнялись условия (7.22).

При заданных Р, Т и Л/ д значения У\_ п и Т 3 _ в являются функциями А и В, а последние - функциями /,. При этом функция А имеет максимум при = Lq, функция В и (А + Б) - при /, = 0,5L Q . Как видно из формулы (7.23), /] не может быть менее 0,5 Lq.

Важно иметь такие значения А и В, при которых Y X _ H и Т 3 _ в были бы минимальны. Особенно большое значение имеет обеспечение минимума суммы У[_ н + Т 3 _ в, характеризующей сопротивление движению тележек в зависимости от уровня направляющих сил. Обычно L n = 0,5L 0 . В этом случае член с Тв сумме Tj_ H + Т 3 _ в равен нулю. Отсюда следует важный вывод о том, что указанная сумма зависит от значений непогашенной части центробежной силы и нормальных составляющих сил тяги. Так как функция А при Lq > I , меньше своего максимума, то, следовательно, и А при шах /, Ф Lq не будет максимальным, поэтому наилучшее силовое взаимодействие тележки и колеи будет при шах/|. Однако /| не может быть сколь угодно большим по следующим соображениям. Направляющая сила Т 3 _ в физически не может быть отрицательной, являясь давлением гребня колеса на рельсовую нить, поэтому /, физически не может быть более значения, при котором У 3 _ в = 0. Таким образом, в пределах принятых ранее допущений наилучшая ширина колеи найдется из условия У 3 _ в = 0, т. е. из условия свободного вписывания. Ширина колеи больше той, при которой У 3 _ в = 0, не целесообразна, так как не изменяет размер

Определению поперечных сил, действующих на путь при движении экипажа по кривым, посвящено много работ. Плодотворным при этом оказалось создание графиков-паспортов вписывания экипажей в кривые. Определение основных характеристик такого паспорта производится в зависимости от непогашенного ускорения а н. При этом направляющие, боковые, рамные силы и полюсные расстояния часто аппроксимируются линейными зависимостями:

где а, Ь, с, d - эмпирические коэффициенты.

В качестве примера на рис. 7.11 приведен график-паспорт бокового воздействия на путь грузового вагона на тележках ЦНИИ-ХЗ с жесткой базой L Q = 1,85 м и нагрузкой от колесной пары на рельсы 220 кН. Коэффициент трения колес о рельсы/ = 0,25.

Нормы и допуски по ширине колеи в кривых. Ширина колеи в кривых должна устанавливаться такой, чтобы обеспечивалось свободное вписывание наиболее массовых экипажей (грузовых вагонов). Ширина колеи должна также обеспечивать техническую возможность вписывания в кривые наиболее неблагоприятных по воздействию на путь экипажей без заклинивания. Это условие определяет минимально допустимую ширину колеи. Максимально допустимая


Рис. 7.11. График-паспорт бокового воздействия на путь в кривой вагона на тележках ЦНИИ-ХЗ (18-100) ширина колеи определяется из условия надежного предотвращения провала колес подвижного состава внутрь колеи.

В настоящее время на дорогах РФ установлена ширина колеи на прямых участках пути и на кривых радиусом 350 м и более - 1520 мм. Ширина колеи на более крутых кривых должна быть при радиусе от 349 до 300 м - 1530 мм; при радиусе 299 м и менее - 1535 мм.

При этом требуется, чтобы крутизна отводов ширины колеи составляла не более:

  • 1 мм на 1 м длины пути на участках со скоростями до 140 км/ч;
  • 1 мм на 1,5 м при скоростях 141-160 км/ч;
  • 1 мм на 2 м при скоростях 161-200 км/ч.

Отвод уширения колеи в кривых делают на протяжении переходных кривых.

Устройство пути в кривых малых радиусов. В случае если радиус кривой настолько мал, что максимальная нормативная ширина колеи 1535 мм оказывается меньше минимально необходимой, определенной по схеме заклиненного вписывания с добавлением минимального зазора 8 min , в таких кривых резко возрастает боковой износ рельсов и расстройство рельсовой колеи.

Для облегчения работы наружной нити в таких кривых укладывают контррельсы внутри колеи вдоль внутренней нити. В этом случае направляющая колесная пара колесом, идущим по внутренней нити, упирается в контррельс, не распирая наружную нить (рис. 7.12). В очень крутых кривых приходится иногда укладывать контррельсы у обеих нитей внутри колеи. Контррельсы увеличивают сопротивле-


Рис. 7.12. Положение колесных пар в кривой при наличии контррельса ние движению, поэтому практически укладку их применяют лишь в кривых радиусом примерно 160 м и менее. Желоб между контррельсом и рельсом внутренней нити кривой должен иметь ширину 60- 85 мм. Контррельсы должны быть надежно соединены с ходовыми рельсами посредством вкладышей и болтов.

Все новые локомотивы рассчитывают на вписывание в кривые радиусом не менее 150 м при ширине колеи 1535 мм.

Уширение или ширина колеи в кривой определяется расчетом вписывания железнодорожных экипажей в кривую, исходя из следующих двух условий:

1) Ширина колеи должна быть оптимальной, т.е. обеспечивать наименьшее сопротивление движению поездов, наименьший износ рельсов и колес, предохранять рельсы и колеса от повреждаемости и путь от искажения в плане, не допускать провала колес между рельсовыми нитями.

2) Ширина колеи не должна быть меньше минимально допускаемой, т.е. должна исключать заклинивание ходовых частей экипажей между наружной и внутренней рельсовыми нитями.

3) Определение оптимальной ширины колеи в кривой.

За расчетную схему определения оптимальной ширины колеи примем такую, при которой железнодорожный экипаж своим наружным колесом передней оси жесткой базы прижимается к наружному рельсу кривой, а задняя ось жесткой базы либо занимает радиальное положение, либо стремиться его занять; при этом центр поворота экипажа находится на пересечении того радиуса с продольной геометрической осью жесткой базы экипажа. Кроме этого:

1) Во всех случаях определенная расчетном ширина рельсовой колеи не должна превышать максимальной ширины колеи S мах = 1535мм.

2) Если расчетная ширина колеи S получит значение больше максимального значения S мах, следует перейти к определению минимально допустимой ширины колеи, приняв соответствующую расчетную схему.

3) Если расчетная ширина колеи S получится меньше нормальной ширины на прямом участке пути (S 0 = 1520мм), то это будет означать, что конструктивные размеры и особенности ходовых частей рассматриваемого экипажа позволяют ему проходить кривую данного радиуса без уширения ее колеи. В таком случае ширина колеи S должна приниматься по ПТЭ в зависимости от величины радиуса.

4) Определение минимально допустимой ширины колеи.

Опасный предел ширины колеи по сужению определяется возможностью заклинивания колесной пары, имеющей максимальные размеры в расчетном уровне, т.е.

S min = q max = T max + 2h max + 2µ (5)

При определении минимально допустимой ширины колеи возможны следующие случаи:

1) Если S min ≤ S птэ, то вписывание обеспечено. При этом сопоставление друг с другом всех трех значений ширины колеи S min , S птэ и S опт позволяет ориентировочно оценить условия, в которых будет происходить реальное вписывание, т.е. к какому виду вписывания оно будет ближе, к свободному или к заклиненному.

2) Если S min > S птэ, то этот случай в свою очередь распадается на следующие два:

a. Если S min < S птэ < S max , где S max = 1548мм – предельный размер колеи в сторону ее уширения. Установленный из условия предупреждения провала колес внутрь колеи, то для пропуска рассматриваемого экипажа требуется перешивка пути с размера S птэ на расчетную величину S min (по разрешению Н).

b. Если S min < S птэ > S max , то для пропуска экипажа требуется перешивка колеи на расчетную величину; при этом для предупреждения провала колес внутрь колеи укладываются контррельсы.

5) Возвышение наружного рельса, исходя из особенностей одинакового вертикального износа обоих рельсов.

При проходе подвижного состава по кривой возникает центробежная сила, стремящаяся опрокинуть экипаж наружу кривой. Опрокидывание может произойти только в исключительных случаях. Однако центробежная сила неблагоприятно действует на пассажиров, вызывает перераспределение вертикальных давлений на рельсы обеих нитей и перегруз наружной нити. Центробежная сила вызывает также дополнительное воздействие на путь при вписывании экипажа в кривую. Это влечет за собой усиленный износ рельсов наружной нити. Кроме того, большие поперечные силы вызывают раскантовку рельсов, уширение рельсовой колеи, расстройство положения пути в плане.

Во избежание указанных явлений устраивают возвышение наружной рельсовой нити над внутренней.

Для обеспечения одинакового вертикального износа обеих нитей необходимо, чтобы сумма нормальных давлений от всех поездов на наружную нить равнялась сумме нормальных давлений от тех же поездов на внутреннюю нить

Таким образом необходимо, чтобы:

ΣЕ н = ΣЕ в

Центробежная сила при движении экипажа массой m по кривой радиусом R со скоростью V будет определяться выражением:

Где G – вес экипажа

6) Возвышение наружного рельса, исходя из обеспечения комфортабельности езды пассажиров.

Требуется установить такое возвышение, чтобы величина непогашенного ускорения, возникающая при прохождении поезда с максимальной скоростью, не превышала допустимой величины

Откуда (25)

Здесь а нд – допустимая величина непогашенного центробежного ускорения. Согласно нормативам а нд принимается равным для пассажирских поездов 0,7 м\с 2 (в отдельных случаях а ан = 1,0 м\с 2), а для грузовых поездов а нд = ±0,3 м\с 2 .

Принимая S1 = 1,6м, g = 9,81 м\с 2 , V – км\ч, h – мм, получим:

163а нд (26)

Максимальная величина возвышения наружного рельса на отечественных дорогах принята равной 150мм. Если по расчету получится большая величина, принимают 150 мм и ограничивают скорость движения по кривой из уравнения (26)

При а нд = 0,7 м\с 2 и h= 150мм

7) Нормы возвышения наружного рельса.

Возвышение должно устраиваться в кривых радиусом 4000 м и менее. Величина возвышения наружного рельса в кривой определяется по формулам:

1) Для пассажирских поездов

2) Для грузовых поездов

3) Для потока поездов

Где, V max п и V max гр – максимальные скорости соответственно пассажирских и грузовых поездов, установленные приказом начальника дороги.

V пр – средняя приведенная скорость поездов потока.

R – радиус кривой.

При определении возвышения по формуле (29) рациональная работа пути обеспечивается при скоростях движения потока грузовых поездов, лежащих в пределах

Что соответствует уровню непогашенных ускорений пассажирских поездов а нп = 0,7 м\с 2 и грузовых поездов а н ­ гр = ±0,3 м\с 2 .

8) Основные требования к устройству и содержанию переходных кривых.

Переходные кривые предназначены для соединения прямого участок пути с кривой заданного радиуса с целью обеспечения плавного перехода экипажа в кривой участок пути без толчков и ударов. На переходной кривой полностью осуществляется отвод возвышения наружного рельса и уширения колеи. При проектировании переходной кривых выбирается их длина, геометрическое очертание кривой в плане и определяются координаты для ее разбивки.

В пределах переходной кривой плавно увеличивается возвышение наружного рельса от 0 до h в КПК; делается отвод уширения колеи, если последнее имеется в круговой кривой.

Основные требования к устройству и содержанию ПК сводятся к тому, чтобы появляющиеся, развивающиеся и исчезающие силовые факторы (ускорения, силы, моменты) в пределах длины R ПК изменялись постепенно и монотонно, с заданным графиком, а в начале и в конце ПК они были равны нулю, что обеспечивается при соблюдении требований.

В НПК y,φ и к = 0, КПК эти параметры не ограничиваются.

В НПК и КПК эти производные равны нулю.

Первые три требования о недопустимости внезапных изменений в НПК, КПК и на протяжении переходной кривой (рис.2) ординат у , углов поворотов φ и кривизны к по монотонности их изменения. Выполнение всех пяти требований создает наилучшее условия прохода подвижного состава по кривым, что особенно важно при высоких скоростях движения.

9) Физический параметр переходной кривой.

Обозначим: и назовем эту величину физическим параметром переходной кривой. Тогда выражение для l получит вид:

При l = l 0 в КПК ρ=R и

Здесь С – параметр (геометрический) переходной кривой.

10) Проектирование переходных кривых методом сдвижении.

Разбивку переходной кривой производят в предположении, что на местности известно положение тангенса первоначальной круговой кривой (точки Т). Для определения положения начала переходной кривой (точки НПК) необходимо вычислить величину m 0 . Из приведенной схемы находим.

FT = AO = Ptg β/2

m 0 = m + Ptg β/2

Неизвестные величины m и Р определятся как:

Зная положение начала переходной кривой НПК, координаты ее конца (Х 0 ,у 0) в точке КПК вычисляем по уравнению радиодальной спирали в параметрической форме

11) Укороченные рельсы на внутренней нити.

Укладка укороченных рельсов на внутренней нити кривой имеет целью установку рельсовых стыков одной нити (по наугольнику) и вызвана тем, что длина внутренней нити кривой меньше, чем наружной.

Для каждой кривой выбираются тип укорочения, количество и порядок укладки укороченных рельсов. Для рельсов Р65 установлено два типа укорочений: 80мм и 160мм.

Выбор типа укороченных рельсов для данной кривой производится по формуле:

Где S 1 – ширина колеи по оси головки рельсов в пределах круговой кривой:

S 1 = S птэ + b,

Где b – ширина головки рельса;

S птэ – нормативная ширина колеи в кривых в зависимости от радиуса;

Вычислив величину укорочения по формуле (1) принимаем ближайшее большее стандартное укорочение. Необходимое количество укороченных рельсов принятого размера определим из выражения:

Укороченные рельсы укладываются в тех местах кривой, где накапливающийся забег стыков достигает половины принятого стандартного укорочения.

12) Уширение междупутных расстояний в кривых.

В круговых кривых на двухпутных линиях увеличивают расстояние между осями путей по габаритным нормам.

Это увеличение осуществляется разными способами. Один из способов заключается в том, что междупутное расстояние увеличивают с 4,1 м до 4,1 + А 0 на прямых перед каждой переходной кривой введением дополнительных S-образных кривых.

Этот способ применяют редко, так как он имеет крупный недостаток: на отодвигаемом пути появляется по две кривые с каждой стороны основной кривой, хотя и большого радиуса.Другой способ (способ разных сдвижек) состоит в том, что применяют разные параметры С переходных кривых наружного пути. Устраивают обычным порядком, параметр С переходной кривой внутреннего пути подбирают таким образом, чтобы сдвижка внутренней круговой кривой Р в была равна сдвижке круговой кривой наружного пути плюс А 0 , т.е.

Р в = Р н + А 0

13) Классификация соединений и пересечений путей.

Соединения и пересечения рельсовых путей служат для передвижения подвижного состава с одного пути на другой, переезда подвижного состава через другие пути, расположенные в одной плоскости, или разворота поезда или отдельного локомотива на 180 0 .

14) Классификация стрелочных переводов и глухих пересечений.

Стрелочные переводы являются наиболее распространенными конструкциями среди всех соединений и пересечений путей (их около 99%). Они служат для соединения или разветвления путей и предназначены для перевода подвижного состава с одного пути на другой. Стрелочные переводы бывают:

1) Одиночные

a. Односторонние обыкновенные (наиболее распространенные на сети дорог и чаще всего употребляются на главных и станционных путях)

d. Несимметричные односторонней кривизны

2) Двойные

a. Односторонние

b. Разносторонние симметричные

c. Разносторонние несимметричные

3) Перекрестные

a. Одиночные

b. Двойные

4) Совмещенные

a. При совмещении двух колей разных размеров

b. При сплетении стрелочных переводов

15) Основные элементы обыкновенных стрелочных переводов.

К основным элементам обыкновенного одиночного стрелочного перевода относятся:

1) Стрелка

2) Крестовина с контррельсами и путевыми приконтррельсовыми рельсами.

3) Соединительные пути

4) Подрельсовые основания

5) Переводной механизм и его гарнитура

Стрелка состоит из:

1) двух рамных рельсов

2) двух остряков

3) стрелочной, рабочей и соединительных тяг

4) двух комплектов корневых креплений

5) стрелочные накладки

6) крепления

16) Особенности конструкции стрелочных переводов и требования, предъявляемые к ним

Стрелочные переводы являются наиболее сложными и дорогостоящими элементами железнодорожного пути. Для решения проблемы значительного повышения надежности м долговечности стрелочных переводы требуется кардинальные пересмотр их конструкций, отдельных узлов и элементов с созданием новых технологий производства. В последние годы разработан и внедрен целый комплекс стрелочных переводов нового поколения и технических решений в совершенствовании их конструкции. К ним в первую очередь относятся скоростные стрелочные переводы на железобетонных брусьях, переводы проектов 2726, 2728 для путей 1-2- классов, стрелочные переводы с крестовинами с непрерывной поверхностью катания марки 1/22. Ведется внедрение модернизированных стрелочных переводов массовых конструкций.

Стрелочные переводы являются ключевыми конструкциями пути как повышение скоростей движения поездов, повышение провозной м пропускной способности железных дорог. Исследования показали, что без наличия стрелочных переводов позволяющих реализовать установленную на перегоне скорость, практически нельзя решить задачу об увеличении скорости на участке в целом, да и на перегоне в частности.

17) Определение основных геометрических размеров обыкновенных стрелочных переводов с прямым остряком.

Требуется:

1) Определить радиус переводной кривой R.

2) Длину прямой вставки k перед математическим центром крестовины

3) Теоретическую L T длину перевода

4) Практическую L П длину перевода.

5) Осевые размеры перевода а и b .

α - Угол крестовины
n
- длина передней – усовой – части крестовины
m
– длина хвостовой части крестовины
O k
– математический центр или острие крестовины
S 0
– нормальная ширина колеи
l остр
– длина остряка
β – стрелочный угол
q – передний вылет рамного рельса
L T - теоретическая длина стрелочного перевода – расстояние от начала остряков до математического центра крестовины, измеренное по рабочей грани рамного рельса или по оси прямого пути.
O c – центр стрелочного перевода – пересечение осей прямого и бокового путей
a – расстояние от переднего стыка рамных рельсов до центра стрелочного перевода, измеренное по оси прямого пути
b – расстояние от центра С.П. до хвостового стыка крестовины, измеренное по оси любого пути перевода.
O – центр переводной кривой
L П – полная или практическая длина С.П. от переднего стыка рамных рельсов о хвостового стыка крестовины.

Примем в прямоугольной системе координат ось У-У, проходящей через математический центр крестовины, и ось Х-Х совместим с рабочей гранью наружной нити прямого пути.

Спроектируем контур АВСО К на эти взаимно перпендикулярные оси. Но предварительно для этой сделаем следующие дополнительные построения.

Из центра переводной кривой, т.е. из точки О, восстановим радиус – перпендикуляр к рабочей грани рамного рельса; из точек В и С опустим перпендикуляры на этот радиус –перпендикуляр соответственно в точках В 1 и С 1 . В результате чего получится прямоугольный треугольник ОВ 1 В с прямым углом β при вершине О, а также ОС 1 С прямым углом при вершине С 1 и с углом крестовины α при вершине О.

Теоретическая длина перевода , как видно из рисунка, представляет собой проекцию контура АВСО К на горизонтальную ось, т.е.

Но В 2 С = С 1 С – В 2 С 1 = С 1 С – В 1 В

Из треугольника ОС 1 С: С 1 С = R sinα

Из треугольника ОВ 1 В: В 1 В = R sin

Из треугольника О к С 2 С: С 2 О К = k cosα

Следовательно, после подстановки в уравнение (1) значений В 2 С и С 2 О К получим:

L T = l остр соs β+R (sinα - sin β)+ k cosα (2)

Проекция того же контура АВСО К на вертикальную ось будет нормальной шириной колеи против крестовины, т.е.

S 0 = l остр sin β + В 1 С 1 + СС 2 (3)

Но В 1 С 1 = ОВ 1 - ОС 1

Из треугольника ОВ 1 В: ОВ 1 = R cos β

Из треугольника ОС 1 С: ОС 1 = R cosα

Из треугольника О К С 2 С: СС 2 = k sinα

Таким образом, подставив в выражение (3) значения В 1 С 1 и СС 2 , найдем ширину колеи в крестовине: S 0 = l остр sin β + R (cos β - cos α) + k sinα

Полная или практическая длина стрелочного перевода: L П = q + L T + m (5)

Радиус R и длину прямой вставки перед крестовиной k определяют в зависимости от того, какие параметры известны или заданы.

18)Определение основных геометрический размеров обыкновенного стрелочного перевода с криволинейным остряком секущего типа.

В зависимости от исходных данных в практике проектирования при определении величин R, k, L T , L n , α, b могут быть два случая:

1) Когда радиус кривизны остряка R 0 не равен радиусу переводной кривой R

2) Когда радиус кривизны остряка R 0 равен радиусу переводной кривой R.

В кривых участках пути подвижной состав отклоняется от вертикальной оси пути (см.рис. 5.1). Чем круче (меньше) радиус кривой, тем больше возвышение наружного рельса над внутренним h, а, следовательно, больше угол отклонения s от оси пути. В связи с этим для обеспечения безопасности движения на кривых участках пути размеры габарита приближения строений увеличиваются. Величины увеличения габаритных расстояний D зависят отрадиуса кривой, места расположения устройства по отношению к кривой с внутренней или внешней стороны, расстояния от оси пути и определяется по таблице 5.1.

Рис. 5.1 Положение экипажа в кривой с возвышением наружного рельса:

I - центробежная сила;

a - расстояние от центра тяжести экипажа до уровня головки рельсов;

G - вес экипажа;

h - возвышение наружного рельса;

s - угол наклона расчетной плоскости к горизонту.

Нормы увеличения горизонтальных размеров габарита приближения строений даны:

С наружной стороны кривой – при любом возвышении наружного рельса;

С внутренней стороны кривой – при расчетных возвышениях наружного рельса, изменяющихся от D =60 мм до D =100 мм при радиусах кривых 4000 – 1800 м, а также 160 мм при радиусах кривых 1500 м и меньше.

Таблица 5.1

Нормы увеличения горизонтальных размеров (D) габарита приближения строений (мм)

Место расположения устройства Радиус кривой, м
С наружной стороны кривой
С внутренней стороны кривой при расположении устройства на прямом участке пути на расстоянии от оси пути:
2450 мм
2750 – 3100 мм
5700 мм

Номинальный размер ширины колеи между внутренними гранями головок рельсов на прямых участках пути и на кривых радиусом 350 м и более - 1520 мм. Ширина колеи на более крутых (малых) кривых должна быть:

При радиусе от 349 м до 300 м 1530 мм;

При радиусе от 299 м и менее 1535 мм.

Пример построения очертания габарита приближения

Строений и вписывания в него габарита подвижного состава с размещением инженерных сооружений и устройств

Задание предусматривается изучение, вычерчивание и сопоставление размеров и очертания различных габаритов, а также условий взаимного размещения железнодорожных устройств. Вычерчивание габаритов и устройств рекомендуется выполнять в электронном виде или на чертежной бумаге формата А4 в масштабе М 1:50.

При выполнении задания необходимо учитывать:

1) Где и при каких условиях (на станции, на перегоне, на прямом или кривом участке пути) требуется вычертить габарит приближения строений;

2) Выполнение задания начинается с нанесения линий, обозначающих УГР и оси железнодорожного пути. Габариты приближения строений, подвижного состава и погрузки целесообразно вычерчивать раздельно. Размеры проставляются согласно существующим требованиям ГОСТов в местах, удобных для чтения;

3) Если заданием предусмотрено размещение устройств на кривом участке пути, то рассчитываются и проставляются фактические размеры габарита после их соответствующего увеличения на величину D в зависимости от радиуса кривой и места расположения устройств.

Например:

1. Требуется разместить высокую пассажирскую платформу с наружной стороны кривого участка пути. Радиус кривой R=3000 м. На прямом участке пути расстояние от оси пути до внутреннего края высокой пассажирской платформы равно 1920 мм. По таблице 5.1 увеличение габаритного расстояния D =10 мм. Таким образом, минимальное допустимое расстояние от оси пути до внутреннего края высокой пассажирской платформы с наружной стороны кривого участка пути равно 1930 мм.

2. Подвижной состав находится на кривом участке пути при R=200 м. В соответствие с ПТЭ п.3.9 производим уширение рельсовой колеи до 1535 мм.

Примеры построения совмещенных габаритов С и Т на станции и перегоне на прямом участке пути с размещением мачтового карликового светафоров приведены на рисунке 6.1.



Рис. 6.1 Совмещенное расположение габаритов С и Т на станции и перегоне


Список литературы

1. Инструкция по применению габаритов приближения строений ГОСТ 9238-83 № ЦП/4425. М.: Транспорт, 1988 - 143 с.

2. Инструкция по применению габаритов подвижного состава ГОСТ 9238-83 № ЦВ/4422. М: Транспорт, 1988 - 133 с.

3. Железные дороги. Общий курс: Учебник для ВУЗов/ Под ред. М.М.Уздина. 5-е изд. перераб. и доп. - СПб.: Информационный центр «Выбор», 2002.-368 с.

4. Сюй Ю.А., Телятинская М.Ю., Ульяненкова Н.В. Сооружения и устройства железных дорог. Учебное пособие. М.: МИИТ, 2003 - 19 с, 3-е изд. перераб. и доп., 2008 - 78 с.

5. ГОСТ 9238-73. Габариты приближения строений и подвижного состава железных дорог колеи 1520 (1524) мм (для линий со скоростью движения поездов не свыше 160 км/ч). Взамен ГОСТ 9238-59. Введ. 1973-39 с.

Св.план 2010, поз.257

Вакуленко Сергей Петрович

Сомов Алексей Николаевич,

Баранова Марина Викторовна

Общий курс транспорта

(Габариты на транспорте: железнодорожный транспорт)

Учебное пособие

Подписано в печать Формат Тираж 100 экз.

Усл.печ.л. – Заказ -

127994 Москва, А – 55 ул. Образцова, 9 стр. 9

Типография МИИТа


* Членами ОСЖД являются транспортные министерства и центральные государственные органы, ведающие железнодорожным транспортом, 27 стран: Азербайджанская Республика, Республика Албания, Республика Беларусь, Республика Болгария, Венгерская Республика, Социалистическая Республика Вьетнам, Грузия, Исламская Республика Иран, Республика Казахстан, Китайская Народная Республика, Корейская Народно-Демократическая Республика, Республика Куба, Киргизская Республика, Латвийская Республика, Литовская Республика, Республика Молдова, Монголия, Республика Польша, Российская Федерация, Румыния, Словацкая Республика, Республика Таджикистан, Республика Туркменистан, Республика Узбекистан, Украина, Чешская Республика и Эстонская Республика. Кроме того, в качестве наблюдателей в ОСЖД участвуют Немецкие (ДБ АГ), Французские (СНЦФ), Греческие (ЦХ), Финские (ВР), Югославские (ЮЖ) железные дороги и АО "Железная дорога Дьер-Шопрон - Эбенфурт" (АО ДьШЭВ).

Рассказать друзьям