Презентация на тему "общая электротехника и электроника". Презентация по электротехнике и электронике на тему "электрический ток" Презентации по электричеству и основам электротехнике

💖 Нравится? Поделись с друзьями ссылкой

Содержание Понятие об электрическом токе Физические величины Распределение электроэнергии Закон Ома Степень IP Степень IK

Понятие об электрическом токе Электрический ток — направленное движение электрически заряженных частиц. Электрический ток это?

Понятие об электрическом токе Как создать направленное движение заряженных частиц? Для поддержания электрического тока в проводнике необходим внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника. Такими источниками энергии служат так называемые источники электрического тока, обладающие определенной электродвижущей силой (ЭДС) , которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Понятие об электрическом токе Во всех ли веществах возможно движение заряженных частиц? Проводник Полупроводник. Диэлектрик это тело, внутри которого содержится достаточное количество свободных электрических зарядов, способных перемещаться под действием электрического поля это тело не содержащее внутри свободные электрические заряды. В изоляторах электрический ток невозможен металлы, растворы солей и кислот, влажная почва, тела людей и животных стекло, пластик, резина, картон, воздух это материал, проводящий ток, только при определенных условиях кремний и сплавы на его основе

Понятие об электрическом токе Постоянный ток (DC) постоянным током называется электрический ток, который не изменяется во времени по направлению. Источниками постоянного тока являются гальванические элементы, аккумуляторы и генераторы постоянного тока. Переменный ток (AC) переменным называется электрический ток, величина и направление которого изменяются во времени. Область применения переменного тока намного шире, чем постоянного. Это объясняется тем, что напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния.

Физические величины Напряжение Сила тока Сопротивление Частота Активная мощность Реактивная мощность Полная мощность

Напряжение (U) между двумя точками – разность потенциалов в различных точках электрической цепи, обусловливающая наличие в ней электрического тока. Единица измерения — Вольт (В) 1 В = 1 Дж/Кл

Сила тока (I) — величина, равная отношению заряда q , прошедшего через поперечное сечение проводника, к промежутку времени t , в течение которого шел ток. Единица измерения — Ампер (А)

Сопротивление (R) – физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Единица измерения — Ом (Ом)

Частота (f) – определяет количество колебаний тока в секунду. Единица измерения — Герц (Гц) 50 Гц

Мощность Электрическая мощность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Вт ВАР ВА Q = U ∙ I ∙ sin φ P = U ∙ I ∙ cos φ S=U ∙ I

Распределение электроэнергии Линейное напряжение (U л) — это напряжение между двумя фазными проводами (380 В) Фазное напряжение (U ф) — это напряжение между нулевым проводом и одним из фазных (220 В)

Закон Ома: физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома. Суть закона проста: порождаемый напряжением ток обратно пропорционален сопротивлению, которое ему приходится преодолевать, и прямо пропорционален порождающему напряжению. Формула закон Ома для участка цепи: I= U R

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления. Закон Ома

IP и IK Степень защиты IP , состоящая из двух букв и двух последующих цифр. Код IP указывает степень защиты от контакта с токопроводящими частями, проникновения посторонних твердых тел, а также жидкостей. Степень защиты IK состоит из двух букв и двух последующих цифр. Код IK указывает степень защиты от внешних механических ударов.

Степень IP 1. Защита от проникновения твердых тел размером более 50 мм (пример: случайный контакт с рукой) 2. Защита от проникновения твердых тел размером более 12 мм (пример: контакт с пальцами) 3. Защита от проникновения твердых тел размером более 2, 5 мм (пример: контакт с инструментами, проводами) 4. Защита от проникновения твердых тел размером более 1 мм (пример: контакт с небольшими инструментами, тонкими проводами) 5. Защита от проникновения пыли (безвредный налет) 6. Полная пыленепроницаемость0. Нет защиты

Степень IP 1. Защита от вертикально падающих капель воды (конденсация) 2. Защита от капель воды, падающих под вертикальным углом до 15 о 3. Защита от распыления воды под вертикальным углом до 60 о 4. Защита от распыления воды с любой стороны 5. Защита от струй воды, поступающих под небольшим давлением со всех сторон 6. Защита от мощных струй воды и волн 7. Защита от проникновения жидкости при временном погружении 8. Защита от проникновения жидкости при длительном погружении под давлением 0. Нет защиты

Степень IK 01 — Энергия удара 0, 150 Дж 02 — Энергия удара 0, 200 Дж 03 — Энергия удара 0, 350 Дж 04 — Энергия удара 0, 500 Дж 05 — Энергия удара 0, 700 Дж 06 — Энергия удара 1, 00 Дж 07 — Энергия удара 2, 00 Дж 08 — Энергия удара 5, 00 Дж 09 — Энергия удара 10, 00 Дж 10 — Энергия удара 20, 00 Дж

«Электронные средства наблюдения» - Преимущества ЭО и ТВ средств наблюдения. Физический принцип действия оптико-электронного прибора. Задачи, решаемые с помощью ЭО и ТВ средств. Учебные вопросы. Общие сведения об оптико-электронных средствах наблюдения. Лекция 13/1. К таким приборам относятся: Минимально допустимая освещенность на фотокатоде (Е) от 5.10-3 до 5.10-4 лк.

«Лампы электрические» - Регулирование оставалось еще ручным. В.В.Петров. Лампа Яблочкова. В течение первой половины XIX в. господствующее положение занимало газовое освещение. Осенью 1875 г. Яблочков проводил опыт электролиза поваренной соли. В 1879 г. Эдисон заинтересовался проблемой электрического освещения. Введение. Тогда же, в 1802 г., Дэви в Англии демонстрировал накал проводника током.

«Объяснение электрических явлений» - План урока. Если заряжен, какой знак имеет шарик? Диэлектрики. Электрон. Почему электроны переходят с шерсти на эбонит, а не наоборот? Тела состоят. Посмотрите на рисунок и ответьте, заряжен ли шарик? Эбонит. Атомов. Основная задача урока. Т е л о. Мини – конференцию по защите проектов. Протон. Ответ обоснуйте.

«Электронагревательные приборы» - Электрический чайник Петера Беренса. Эмиль Ратенау. Электронагревательные приборы. Эмилий Христианович Ленц. ТЭНы всякие нужны… Русская печь. Электронагревательные приборы на кухне. Сопротивление проводника. 1883 год - основание общества allgemeine electricitats-gesellshaft (AEG). Джеймс Прескотт Джоуль.

«Энергосберегающие лампы» - Скорее всего, дело просто в отсутствии элементарной хозяйственности. И за день набегают уже не килограммы, а десятки тонн выброшенного топлива. Энергосбережение на примере моей квартиры. Европейцы стараются снизить энергозатраты всеми возможными способами. Печально, но факт: наша страна - одна из самых энергорасточительных в мире.

«Лампа накаливания» - Две проволоки одинаковой длины и сечения, железная и медная, соединены параллельно. 2. Как называются детали 3 и 4 электрической лампы накаливания? Что означают цифры на цоколе или баллонах ламп? Вставить пропущенные в формулах буквы. 4. 1878 год Лампа с электрической дугой – «Свеча П.Н.Яблочкова». Тест с выбором ответа.

Всего в теме 12 презентаций

Содержание лекцииФормальности
Обзор курса
Введение в теоретическую электротехнику:
ТОЭ – это не сложно!
Основные определения
Законы Ома и Кирхгофа
Классификация электрических цепей
Краткие выводы
2

Формальности

Лектор:
Дегтярев Сергей Андреевич
Итоговая аттестация:
Экзамен
Занятия:
Лекции
Практика (по результатам составляется рейтинг)
Отчетность в течение семестра:
Рейтинг сдается в деканат 3 раза за семестр
(в октябре, в ноябре, в конце семестра)
Пропуск двух и более занятий подряд – служебная записка в деканат
Домашние задания сдаются на следующем практическом занятии
3

Формальности (продолжение)

Виды промежуточного контроля:
Самостоятельные работы – обычно можно
пользоваться конспектом, учебными пособиями и т. п.
Контрольные работы – 3 работы за семестр; нельзя
пользоваться никакими справочными материалами;
ненаписанные контрольные выносятся на экзамен
Домашние задания – задаются на каждом
практическом занятии, обязательно сдать на
следующем практическом занятии
4

Рейтинг

Основные показатели для расчета рейтинга
Средний балл
Процент выполнения учебного плана (процент
выполненных работ – домашних, самостоятельных,
контрольных)
Рейтинг = (средний балл) х (процент выполнения)
Посещаемость
Рейтинг может влиять на экзаменационную
оценку в спорных случаях
5

Список литературы

Основная литература:
Дополнительная
литература:
6
Основы теоретической электротехники: Учебное пособие / Ю. А.
Бычков, В. М. Золотницкий, Э. П. Чернышев, А. Н. Белянин – СПб.:
Издательство «Лань», 2009.
Сборник задач по основам теоретической электротехники:
Учебное пособие / Под. ред. Ю. А. Бычкова, В. М. Золотницкого,
Э. П. Чернышева, А. Н. Белянина, Е. Б. Соловьевой. – СПб.:
Издательство «Лань», 2011.
Основы теории цепей: Лабораторный практикум по
теоретической электротехнике / Под ред. Ю. А. Бычкова, Е. Б.
Соловьевой, Э. П. Чернышева. СПб.: Изд-во СПбГЭТУ «ЛЭТИ»,
2012.
Справочник по основам теоретической электротехники: Учебное
пособие / Под. ред. Ю. А. Бычкова, В. М. Золотницкого, Е. Б.
Соловьевой, Э. П. Чернышева. – СПб.: Издательство «Лань», 2012.
Савельев И. В. Курс общей физики. Книга 2. Электричество и
магнетизм
Белецкий А.Ф. Теория линейных электрических цепей
К. Титце, У. Шенк Полупроводниковая схемотехника
Хоровиц П., Хилл У. - Искусство схемотехники
Открытый курс 6.002 OCW MIT – http://ocw.mit.edu

Обзор курса

Основные темы курса теоретических основ электротехники (1
семестр):
Расчет резистивных электрических цепей (схемотехника)
Расчет линейных динамических цепей (схемотехника, теория
управления)
Численные методы расчета (компьютерная обработка
сигналов)
Расчет линейных динамических цепей при синусоидальных
воздействиях (схемотехника, схемы электропитания)
Операторный метод расчета цепей – преобразование Лапласа
(теория управления)
Частотные характеристики (радиотехника, аудиотехника, ТВ)
Расчет трехфазных цепей (схемы электропитания)
Индуктивно связанные цепи (трансформаторная техника,
схемы электропитания)
7

Обзор курса

Основные темы курса теоретических основ электротехники
(2 семестр):
Спектральные методы расчета цепей (радиотехника,
телевидение, аудиовизуальная техника)
Активные цепи и операционные усилители
(схемотехника, цифровая техника)
Длинные линии – цепи с распределенными параметрами
(устройства СВЧ и антенны)
Дискретные системы (цифровая обработка сигналов,
компьютерное зрение, цифровые устройства и
микропроцессоры, системы на кристалле, медицинская
техника)
Нелинейные системы (схемотехника, аудиовизуальная
техника, радиотехника)
8

Пример

Лампа накаливания
Задача: моделировать поведение лампы накаливания в
электрической цепи
*источник изображения: http://jeromeabel.net
9

Пример (продолжение)

Подключим лампу к источнику напряжения
*источники изображений: http://jeromeabel.net, https://openclipart.org
10

Пример (продолжение)

Цель
Построить модель объекта, пригодную для
предсказания его поведения с достаточной точностью
Средства достижения цели:
Рассматривать только интересные нам свойства и
параметры объектов (абстракция)
Пользоваться наиболее простыми методами, точности
которых еще хватает для решения задачи (упрощение
и идеализация)
Применять известные математические методы для
построения и использования модели
11

Пример (продолжение)

Какой ток будет протекать через лампочку?
Как долго лампочка будет работать от одной батарейки?
Какого сечения нужно выбрать провода для соединения?

Слайд 2

Содержание курса ТОЭ ФИБС весенний семестр 2013-14

7. Передаточная функция цепи и основные характеристики цепи 7.1. Нормирование параметров цепи 7.2. ПФ цепи и ее свойства 7.3. Виды частотных характеристик 7.4. Связь полосы пропускания RLC-контура с его добротностью 7.5. Понятие о фильтрах 8. Анализ УПР в цепи 8.1. Периодические сигналы и их спектры 2

Слайд 3

8.1.1. Формы записи РФ 8.1.2. Дискретные спектры периодических сигналов 8.1.3. Использование преобразования Лапласа для анализа УПР в цепи 8.2. Мощность и действующее значение РФ 8.2.1. Мощность 8.2.2. Действующее значение 8.3. Методы анализа УПР 8.3.1. Анализ УПР в цепи с использованием РФ 8.3.2. РФ в замкнутой форме 9. Анализ цепей спектральным методом 3

Слайд 4

9.1. Апериодические сигналы и их спектры 9.1.1. Переход от периодического сигнала к апериодическому 9.1.2. Спектральные характеристики апериодических сигналов 9.1.3. Примеры спектров основных сигналов 9.2. Критерии ширины спектра сигнала 9.2.1. Энергия сигнала и критерии ширины спектра сигнала 9.2.2. Связь ширины спектра с длительностью сигнала 9.2.3. Связь ширины спектра с крутизной сигнала 9.3. Приближённый расчёт сигнала по спектру 9.3.1. Расчет сигнала по его амплитудному и фазовому спектру 9.3.2. Связь сигнала с его мнимым и вещественным спектром 4

Слайд 5

9.4. Спектральный метод расчёта цепей 9.4.1. Общая характеристика спектрального метода расчёта цепей 9.4.2. Свойства идеальных цепей 9.4.3. Характеристики реальных цепей 9.5. Спектры амплитудно-модулированных сигналов 10. Анализ четырёхполюсников и активных цепей 10.1. Общая характеристика пассивных четырёхполюсников 10.1.1. Уравнения ЧП 10.1.2. Расчет ПФ и соединения ЧП 10.1.3. Симметричный четырёхполюсник в согласованном режиме 5

Слайд 6

10.2. Расчет цепей с зависимыми источниками 10.2.1. Общая характеристика активных элементов и цепей 10.2.2. Схемы замещения необратимых ЧП 10.2.3. Особенности методов расчета цепей с ЗИ 10.3. Расчет цепей с ОУ 10.3.1. ОУ и его свойства 10.3.2. Использование операционных усилителей для реализации основных математических операций 10.3.3. Особенности расчета цепей с ОУ 11. Анализ нелинейных цепей 6

Слайд 7

11.1. Общая характеристика нелинейных цепей 11.1.1. Исходные понятия 11.1.2. Классификация НЦ 11.2. Методы расчета НЦ 11.2.1. Графический метод расчета R-цепей 11.2.2. Аналитический расчет R-цепей 11.2.3. Расчет R-цепей с диодами 11.2.4. Общая характеристика расчёта нелинейных динамических цепей 7

Слайд 8

Курсовая работа ФИБС 2013-14

В методичке (Курсовое проектирование по теории электрических цепей / Уч.пос. для самост.раб.ст. СПб, 1996. («№9222» З 21/К 93)) тема № 4, в электронной версии методички тема № 2 (номер варианта сообщается преподавателем, ведущим практические занятия) с возможными изменениями схемы и вида входного сигнала на усмотрение преподавателя. Курсовая работа оформляется в соответствии с правилами, изложенными во введении к учебному пособию. Защита курсовой работы принимается преподавателем, ведущим практические занятия до начала экзаменационной сессии. Студент, не защитивший курсовую работу до экзамена не допускается. 8

Слайд 9

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИлекция №9

Глава 7. Передаточная функция цепи и основные характеристики цепи 7.1. Нормирование параметров цепи Цели нормировки(масштабирования): Перейти к безразмерным параметрам: ,близким к 1, т.е. уменьшить разброс параметров цепи. Получить максимально однотипные формулы для одинаковых классов цепей. Типы нормировки: Нормирование по времени (по частоте). нормированное, безразмерное время, где какой-либо характерный интервал, например, постоянная времени для цепи 1-го порядка или время импульса входного сигнала. 9

Слайд 10

Нормированная частота, т.е. , т.е. , т.е. нормирование по времени обратно нормированию по частоте. 2) Нормирование по уровню сопротивления, базисная величина характерное сопротивление цепи, например, в цепи 1-го порядка или сопротивление нагрузки. 3) Нормирование по уровню сигнала, базисная величина максимальное значение входного сигнала. Этот тип нормировки основан на свойстве пропорциональности линейных цепей. Каждая нормировка уменьшает число параметров цепи на 1. Параметры цепи: , т.е. , аналогично дуально. 10

Слайд 11

В курсовом за базисные величины принять, . Нормировать все -элементы, нормировать уровень сигнала не надо. Следует учесть: (килоОмы) кОм = Ом; (миллиГенри) мГн = Гн; (пикоФарады) пФ = Ф. См. пример в электронном варианте курсовой. 11

Слайд 12

7.1. Передаточная функция цепи и ее свойства По теореме свертки преобразования Лапласа имеем: здесь введено обозначение. Найдем изображение переходной характеристики Определение:Передаточной функцией цепи (ПФ) называется отношение изображения реакции к изображению единственного в цепи воздействия при нулевых ННУ. 12

Слайд 13

Свойства: ПФ является изображением ИХ цепи Свойство 1 называют вторым определением ПФ ПХ находят как интеграл ИХ. По ПФ находят частотные характеристики цепи Для перехода к МКА от операторного метода достаточно провести формальные замены 4. ПФ полностью определяет ДУ цепи, знаменатель ПФ – характеристический полином. Вывод: ПФ связывает все основные характеристики цепи. Замечание: ИН подключен к пассивному ДП, найдем входной ток. 13

Слайд 14

7.3. Виды частотных характеристик Определение:Обобщенной ЧХ или просто ЧХ цепи называется отношение комплексной амплитуды реакции к комплексной амплитуде единственного в цепи воздействия в УСР. Т.к. ЧХ – комплексная функция, ее можно представить в алгебраической и показательной форме: АЧХ ФЧХ ВЧХ МЧХ 14

Слайд 15

Очевидны соотношения между ними =arg=фаза =Re 5) АФХ Замечание: АФХ содержит полную информацию о всех видах характеристик, ее строят или по АЧХ и ФЧХ или по ВЧХ и МЧХ и проставляют необходимые частоты. Выводы по ЧХ: АЧХ содержит полную информацию об отношении амплитуд синусоид на выходе и входе в УСР. 15

Слайд 16

2) ФЧХ содержит полную информацию о сдвиге фаз синусоид реакции и воздействия в УСР. Замечание: на практике АЧХ снимают с помощью двух приборов (на входе и выходе), а ФЧХ с помощью двухлучевого осциллографа. Пример: АЧХ ФЧХ 16

Слайд 17

Построим качественно графики характеристик: Замечание: графики АЧХ и ФЧХ построены качественно по 3-м точкам. График АФХ построен на комплексной плоскости по АЧХ и ФЧХ. 17

Слайд 18

Замечание: необходимо уметь контролировать ЧХ цепи по эквивалентным схемам цепи на характерных частотах. 18

Слайд 19

7.4.Связь полосы пропускания RLC-контура с его добротностью Определение:Полосой пропускания (ПП) обычно называют диапазон частот в районе максимума АЧХ, в котором. Замечание: граничные частоты полосы пропускания часто называют частотами среза 19

Слайд 20

Дадим трактовку граничным частотам: при резонансной частоте: , . На границе ПП, . Уменьшается на границе ПП в раз. падает в 2 раза. Найдем ПП, т.е. 1) () , т.е. , т.е. , т.е. «+» 20

Слайд 21

2) () , т.е. , т.е. + = Q= Выводы: чем больше добротность резонансного контура, тем меньше его полоса пропускания. Замечание:1) , т.е. от C не зависит, следовательно, при настройке в резонанс при изменении емкости полоса пропускания не изменяется. 21

Слайд 22

2) Зная график АЧХ можно найти все параметры контура. 7.5. Понятие о фильтрах Рассмотрим ЧП Определение:Четырехполюсником (ЧП) называется часть цепи, имеющая 2 пары внешних выводов (полюсов). Определение:Фильтром называется ЧП, у которого в некоторой полосе частот, называемой ПП, АЧХ обычно изменяется от 1 до 0,707 или от до а в остальной полосе частот, называемой полосой задерживания (ПЗ) АЧХ быстро затухает. Определение:Фильтр называется идеальным, если у него в ПП АЧХ=1, а в ПЗ АЧХ=0. Замечание: идеальный фильтр реализовать невозможно хотя бы потому, что его ЧХ не является дробно-рациональной функцией от обобщенной частоты как это должно быть у реальных цепей. 22

Слайд 23

Классификация фильтров: рассмотрим классические симметричные фильтры типа «к» ФНЧ – фильтр нижних частот, пропускает на низких частотах Трактовка поведения цепи на характерных частотах: , т.е. КЗ; , т.е. ХХ 23

Слайд 24

2) , т.е. ХХ; , т.е. КЗ 2. ФВЧ – фильтр верхних частот, пропускает на высоких частотах Трактовка дуальна 24

Слайд 25

3. ППФ – полосовой пропускающий фильтр, пропускает сигнал в некотором диапазоне частот 4. ПЗФ – полосовой заграждающий фильтр, не пропускает сигнал в некотором диапазоне частот 25

Слайд 26

Рассматривают и другие типы фильтров. Например, полиномиальные (фильтры Баттерворта и Чебышева различного порядка), фильтры типа m и другие. 8. Анализ УПР в цепи 8.1. Периодические сигналы и их спектры 8.1.1.Формы записи РФ Условно считаем, что периодическое воздействие приложено к цепи при Тогда к любому моменту времени свободная составляющая затухла и в цепи установившийся (вынужденный) периодический режим. 26

Слайд 27

Реальные периодические сигналы удовлетворяют условиям Дирихле: 1) в пределах периода они ограничены по уровню, 2) в пределах периода они непрерывны, имеют конечное число максимумов и минимумов, если имеют разрывы, то это разрывы 1 рода и их число конечно. Определение: Периодический сигнал удовлетворяющий условиям Дирихле при всех tможно разложить в сходящийся гармонический ряд Фурье причем частоты гармоник кратны частоте первой (основной) гармоники, т.е. , период сигнала ()при этом сумма ряда Фурье в точках непрерывности равна, а в т. разрыва 1 рода равна полусумме пределов слева и справа, т.е. РФ плохо сходится в точках разрыва. Формы записи РФ: 1. 27

Слайд 28

Нулевая гармоника, т.е. постоянная составляющая 2. Можно преобразовать РФ к другой форме Свойства РФ симметричных сигналов: 1) Четные сигналы не содержат синусоид, т.е. 28

Слайд 29

2) Нечетные сигналы не содержат косинусоид, т.е. . 3) РФ сигналов, симметричных относительно оси t при сдвиге на полпериода не содержат гармоник четных номеров 3. Комплексная форма записи РФ 8.1.2.Дискретные спектры периодических сигналов Определение: Множество комплексных амплитуд гармоник РФ называется дискретным спектром периодического сигнала, соответственно множество амплитуд, называют дискретным амплитудным спектром, а множество фаз, называют дискретным фазовым спектром. 29

Слайд 30

Амплитудный спектр четная функция; фазовый спектрнечетная функция. Замечание 1: Спектр называется дискретным, т.к. он существует только при дискретных значениях частоты, расстояние между гармониками по оси частот 2: Спектр часто называют линейчатым, т.к. его обозначают отрезками прямых линий. 3: Особенность спектра в том, что. 4: Синусоида тоже периодический сигнал. Его спектры 30

Слайд 31

Выводы: амплитудный спектр полностью характеризует амплитуды гармоник, т.е. синусоид, которыми РФ заменяет периодический сигнал, а фазовый спектр полностью характеризует начальные фазы, каждая гармоника существует в временном интервале и число гармоник тоже бесконечно. Замечание 1: Попутно доказали, что гармоника отрицательной частоты имеет такое же право на существование как и гармоника положительной частоты 2: Все формы записи РФ эквивалентны. 8.1.3.Использование преобразования Лапласа для анализа УПР в цепи 31

Слайд 32

Условным первым импульсом назовем описание периодического сигнала внутри условного первого периода, переходим к преобразованию Лапласа, расширив верхний предел и подставив его в интеграл. Вывод: коэффициенты РФ можно найти используя изображение по Лапласу условного 1-го импульса периодического сигнала. 8.2.Мощность и действующее значение РФ 8.2.1.Мощность Рассмотрим пассивный ДП в УПР, ток и напряжение которого разложены в РФ Средняя мощность за период (активная мощность ДП) 32

Слайд 33

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИлекция № 9

Подставим РФ тока и напряжения с учетом того, что (суммарная площадь синусоиды за период), и интеграл от произведения гармоник с разными номерами тоже равен 0. 8.2.2.Действующее значение РФ Среднеквадратичное значение, имеющее энергетическую трактовку Заменяя на в формуле мощности 33

Слайд 34

Аналогично для напряжения Замечание: У сигнала постоянной величины мгновенное, амплитудное, среднее и действующее значение одно и тоже. 8.3. Методы анализа УПР 8.3.1. Анализ УПР в цепи с использованием РФ Основная идея: РФ воздействия считаем суммой элементарных воздействий и методом наложения находим РФ реакции. Последовательность действий: 1. Периодическое воздействие раскладываем в РФ. На практике обычно ограничиваются несколькими первыми гармониками, т.к. РФ быстро сходится, используют «укороченный РФ» (отрезок РФ) 34

Слайд 35

2. Находим ПФ цепи, по ней ЧХ (АЧХ и ФЧХ) Смысл ЧХ в УСР, а для каждой гармоники ц цепи УСР. 3. Методом наложения находим РФ реакции На основании 1-3 = = 35

Слайд 36

Являясьприближенным, метод эффективен, если цепь ФНЧ. Однако, в некоторых цепях убыль амплитуд воздействия компенсируется ростом АЧХ цепи, приходится учитывать сотни гармоник и приближенный расчет по РФ становится трудоемким. Замечание 1: Спектральный состав реакции полностью соответствует спектральному составу воздействия и новые гармоники на выходе появиться не могут. 2: Цепь пропускает разные гармоники с разными коэффициентами передачи, т.е. форма периодического сигнала на выходе не соответствует форме периодического сигнала на входе. 8.3.2. РФ в замкнутой форме (точный расчет УПР) Основная идея метода – свободная составляющая определяется корнями ХП (т.е. полюсами ПФ), а вынужденная имеет математическую форму воздействия (не выполняется при резонансе). 36

Слайд 37

Последовательность действий: Условно считаем, что периодическое воздействие приложено при t=0 Находим изображение воздействия с учетом формулы для суммы затухающей геометрической прогрессии 2. Находим ПФ цепи находим полюсы ПФ, полюсы предполагаем некратными. 3. Находим изображение реакции (выходного сигнала) и выделяем в нем свободную и вынужденную составляющие. 37

Слайд 38

Свободная составляющая определяется полюсами ПФ, а вынужденная имеет математическую форму воздействия, т.е. геометрическая прогрессия, т.е. искомое описание первого импульса установившейся реакции в интервале первого периода т.е. определяем как обычно 4. Находим 1-й импульс на выходе ]() Определяем его оригинал, т.е. точное описание периодической реакции в интервале 1 периода и периодически продолжаем ее. Замечание 1: Найденное точное решение называют РФ в замкнутой форме, т.к. оно учитывает бесконечное число гармоник. 38

Слайд 39

Замечание 2: Если считать, что входной сигнал начинается от 0, то этот метод можно применить для расчета ПП, фактически найдена свободная составляющая в 3: Расчет можно проводить и для не дробно-рациональной функции. Глава 9. Анализ цепей спектральным методом 9.1. Апериодические сигналы и их спектры 9.1.1. Переход от периодического сигнала к апериодическому Апериодический сигнал (одиночный импульс) можно рассматривать как периодический при Преобразуем РФ в комплексной форме для периодического сигнала 39

Посмотреть все слайды

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Электрическая (электромагнитная) энергия является одним из видов энергий в распоряжении человека. Энергия – это мера различных форм движения материи и перехода движения материи из одного вида в другой. К преимуществам электрической энергии можно отнести: - относительную простоту производства, - возможность практически мгновенной передачи на огромные расстояния, - простые методы для преобразования в другие виды энергии (механическая, химическая), - простота управления электроустановками, - высокий КПД электротехнических устройств.

3 слайд

Описание слайда:

Предысторией электротехники следует считать период до 17 века. В эти времена были обнаружены некоторые электрические (притягивание к янтарю пылинок) и магнитные явления (компас в мореплавании), но природа этих явлений оставалась неизвестной. Первым этапом истории электротехники следует считать 17 век, когда появились первые исследования в области электрических и магнитных явлений. На основе этих исследований в 1799 г. был создан первый источник электрического тока Алессандром Вольтом (Алесса́ндро Джузе́ппе Анто́нио Анаста́сио Во́льта) (итал.) - «вольтов столб» Этот источник называют теперь гальваническим элементом в честь Луи́джи Гальва́ни (итал.), который один год не дожил до этого открытия, но будучи врачом, много сделал для свершения этого открытия

4 слайд

Описание слайда:

Второй этап развития электротехники. 1820 г. – Открыто магнитное действие тока (Ханс Кристиан Э́рстед) (датч.) – датский физик. 1821 г. – Открыт закон взаимодействия электрических токов (Андре-Мари Ампер) (фран.) – французский физик. 1827 г. – Открыт основной закон электрической цепи (Георг Симон Ом) (нем.) – немецкий физик. 1831 г. – Открыт закон электромагнитной индукции (Майкл Фарадей) (англ.) – английский физик. 1832 г. – Открыто явление самоиндукции (Джозеф Генри) (амер.) – американский физик. 1832 г. – Изготовление электрогенератора постоянного тока (Ипполит Пикси) (фран.) – французский инструментальщик (по заказу Андре-Мари Ампера (фран.) – французский физик.

5 слайд

Описание слайда:

Второй этап развития электротехники. 1833 г. – Сформулировано правило, определяющее направление индукционного тока (Эмилий Христианович (Генрих Фридрих Эмиль) Ленц) (нем.) – русский физик. 1838 г. – Изобретение первого электродвигателя, пригодного для практических целей (Бори́с Семёнович (Мориц Герман фон) Я́коби) (нем.) – русский физик. 1841 – 1842 г. – Определение теплового действия тока (Джеймс Прескотт Джоуль) (англ.) – английский физик, (Генрих Фридрих Эмиль) Ленц) (нем.) – русский физик. 1845 г. – Сформулированы правила для расчета цепей (Густав Роберт Кирхгоф) (нем.) – немецкий физик.

6 слайд

Описание слайда:

Третий этап развития электротехники. 1860-1865 г. – Создана теория электромагнитного поля (Джеймс Клерк (Кларк) Максвелл) (англ.) – английский физик. 1870 г. – Создание первого электрогенератора, получившего практическое применение (Зеноб (Зиновий) Теофил Грамм) (бельгиец) –французский физик. 1873 г. – Изобретение электрической лампы накаливания (получение патента) (Алекса́ндр Никола́евич Лоды́гин) (рус.) – русский электротехник. 1876 г. – Изобретение телефона (получение патента) (Александр Грэм Белл) (англ.) – американский физик.

7 слайд

Описание слайда:

Третий этап развития электротехники. 1876 г. – Создание трансформатора для питания током источников освещения (получение патента) (Па́вел Никола́евич Я́блочков) (рус.) – русский электротехник. 1881 г. – Сооружение первой линии электропередачи (Марсель Депре) (фран.) – французский физик. 1885 г. – Изобретение радиоприемника (Алекса́ндр Степа́нович Попо́в) (рус.) – русский электротехник. 1886 г. – Изобретение радиотелеграфа (Гульельмо Марко́ни) (итал.) итальянский радиотехник. 1897 г. – Открыт электрон (Сэр Джозеф Джон Томсон) (англ.) – английский физик.

8 слайд

Описание слайда:

Четвертый этап развития электротехники. 1904 г. – Изобретение лампового диода (Сэр Джо́н Амбро́з Фле́минг) (англ.) – английский физик. 1906 г. – Изобретение лампового триода (Ли де Фо́рест) (англ.) – американский физик. 1928 г. – Изобретение полевого транзистора (получение патента) (Юлий Эдгар Лилиенфельд) австро-венгерский физик. 1947 г. – Изобретение биполярного транзистора (Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs) американские физики. 1958 г. – Изобретение интегральной схемы. (Джек Килби (Texas Instruments) на основе германия, Роберт Нойс (основатель Fairchild Semiconductor) на основе кремния) американские изобретатели.

9 слайд

Описание слайда:

Электротехника – наука о практическом применении электрических и магнитных явлений. Электрон от греч. electron – смола, янтарь. Все основные определения связанные с электротехникой описаны в ГОСТ Р 52002-2003. Постоянные величины обозначают прописными буквами: I, U, E, изменяющиеся в времени значения величин записывают строчными буквами: i, u, e. Элементарный электрический заряд – свойство электрона или протона, характеризующее их взаимосвязь с собственным электрическим полем и взаимодействие с внешним электрическим полем, определяемое для электрона и протона равными числовыми значениями с противоположными знаками. Условно отрицательный знак приписывают заряду электрона, а положительный заряду протона. (-1,6*10-19 Кл)

10 слайд

Описание слайда:

Электромагнитное поле – вид материи, определяемый во всех точках двумя векторными величинами, которые характеризуют две его стороны, называемые «электрическое поле» и «магнитное поле», оказывающий силовое воздействие на электрически заряженные частицы, зависящее от их скорости и электрического заряда. Электрическое поле – одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости. Магнитное поле - одна из двух сторон электромагнитного поля, характеризующаяся воздействием на движущуюся электрически заряженную частицу с силой, пропорциональной заряду этой частицы и ее скорости.

11 слайд

Описание слайда:

Носитель электрических зарядов – частица, содержащая неодинаковое число элементарных электрических зарядов разного знака. Электрический ток – явление направленного движения носителей электрических зарядов и (или) явление изменения электрического поля во времени, сопровождаемые магнитным полем. В металлах носителями заряда являются электроны, в электролите и плазме – ионы. Значение электрического тока сквозь некоторую поверхность S в данный момент времени равно пределу отношения электрического заряда ∆q перенесенного заряженными частицами сквозь поверхность в течение промежутка времени ∆t, к длительности этого промежутка, когда последний стремится к нулю, т.е. где i - электрический ток, (А); q – заряд, (Кл); t – время (с).

12 слайд

Описание слайда:

Постоянный ток – ток при котором в течении каждого одинакового промежутка времени переносится одинаковый заряд, т.е: где I - электрический ток, (А); q – заряд, (Кл); t – время (с). Напряженность электрического тока – векторная величина, характеризующая электрическое поле и определяющая силу, действующую на электрически заряженную частицу со стороны электрического поля. Равна отношению силы, действующей на заряженную частицу, к ее заряду и имеет направление силы, действующей на частицу с положительным зарядом. Измеряется в Н/Кл или В/м. Сторонняя сила – сила, действующая на электрически заряженную частицу, обусловленная неэлектромагнитными при макроскопическом рассмотрении процессами. Примерами таких процессов служат химические реакции, тепловые процессы, воздействие механических сил, контактные явления.

13 слайд

Описание слайда:

Электродвижущая сила; ЭДС – скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. Численно ЭДС равна работе A (Дж), совершаемой этими полями при переносе единицы заряда q (Кл) равной 1 Кл. где E - (ЭДС) электродвижущая сила, В; A – работа сторонних сил при перемещении заряда (Дж); q – заряд, (Кл). Электрическое напряжение – скалярная величина, равная линейному интегралу напряженности электрического поля вдоль рассматриваемого пути. Определяется для электрического напряжения U12 вдоль рассматриваемого пути от точки 1 к точке 2 Где ε - напряженность электрического поля, dl – бесконечно малый элемент пути, r1 и r2 – радиусы-векторы точек 1 и 2, т.е. напряжение – это работа сил поля с напряженностью ε, затрачиваемая на перенос единицы заряда (1 Кл) вдоль пути l. Разность потенциалов – электрическое напряжение в безвихревом электрическом поле, характеризующее независимость выбора пути интегрирования.

14 слайд

Описание слайда:

Электрическая цепь – совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, электрическом токе и электрическом напряжении. Простейшая электрическая цепь (монтажная схема).

15 слайд

Описание слайда:

Элемент электрической цепи – отдельное устройство, входящее в состав электрической цепи, выполняющее в ней определенную функцию. Основными элементами простейшей электрической цепи являются источники и приемники электрической энергии Простейшая электрическая цепь (монтажная схема).

16 слайд

Описание слайда:

В источниках электрической энергии различные виды энергии, например химическая, механическая преобразуются в электрическую (электромагнитную). В приемниках электрической энергии происходит обратное преобразование – электромагнитная энергия преобразуется в иные виды энергии, например химическую (гальванические ванны выплавки алюминию или нанесения защитного покрытия), механическую (электродвигатели), тепловую (нагревательные элементы), световую (лампы дневного света).

17 слайд

Описание слайда:

Схема электрической цепи – графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединение этих элементов. Для сбора схем используют принципиальные схемы, где каждому элементу соответствует условное графическое и буквенное обозначение, а для расчетов цепей используют схемы замещения, в которых реальные элементы замещаются расчетными моделями, а все вспомогательные элементы исключаются. Принципиальные схемы составляются согласно ГОСТ, например: ГОСТ 2.723-68 “Единая система конструкторской документации. Обозначения условные графические в схемах. Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители” ГОСТ 2.728-74 “Единая система конструкторской документации. Обозначения условные графические в схемах. Резисторы, конденсаторы”

18 слайд

Описание слайда:

19 слайд

Описание слайда:

Схема замещения – схема электрической цепи, отображающая свойства цепи при определенных условиях. Идеальный элемент (электрической цепи) – абстрактное представление элемента электрической цепи, характеризуемое одним параметром. Вывод электрической цепи – точка электрической цепи, предназначенная для выполнения соединения с другой электрической цепью. Двухполюсник – часть электрической цепи с двумя выделенными выводами. Цепи бывают простые и сложные. В простых цепях все элементы соединены последовательно. В сложных цепях имеются с разветвлениями для тока.

20 слайд

Описание слайда:

21 слайд

Описание слайда:

22 слайд

Описание слайда:

23 слайд

Описание слайда:

24 слайд

Описание слайда:

По виду тока цепи разделяются на цепи постоянного, изменяющегося и переменного тока. Постоянный ток – электрический ток, не изменяющийся во времени t (рис. 1.3.а). Все остальные токи – изменяющиеся во времени (рис. 1.3.б.) или переменные (рис. 1.3.в.). Цепью с переменным током называют цепь с током, изменяющимся по синусоидальному закону. а) б) в) Рис. 1.3. Виды токов в цепях.

25 слайд

Описание слайда:

К линейным цепям относятся цепи, в которых электрическое сопротивление каждого участка не зависит от значения и направления тока и напряжения. Т.е. вольт-амперная характеристика (ВАХ) участков цепи представлена в виде прямой (линейная зависимость) (рис. 1.3. а). а) б) Рис. 1.3. Вольт – амперные характеристики (ВАХ) цепей. где U - напряжение, (В); I – сила тока, (А). Остальные цепи называются нелинейными (рис. 1.3.б).

26 слайд

Описание слайда:

Электрическое сопротивление постоянному току – скалярная величина, равная отношению постоянного электрического напряжения между выводами пассивного двухполюсника к постоянному электрическому току в нем. где R – электрическое сопротивление постоянному току, (Ом); ρ - удельное сопротивление, (Ом*м); ℓ - длина проводника, (м); S – площадь поперечного сечения, (м2), где R – электрическое сопротивление постоянному току, (Ом); U - напряжение, (В); I – сила тока, (А). Резистор – элемент электрической цепи, предназначенный для использования его электрического сопротивления. Для проводов сопротивление находится по формуле:

27 слайд

Описание слайда:

Сопротивление проводов, резисторов и других проводников электрического тока зависит от температуры T окружающей среды Электрическая проводимость (для постоянного тока) - скалярная величина, равная отношению постоянного электрического тока через пассивный двухполюсник к постоянному электрическому напряжению между выводами этого двухполюсника. Т.е. величина обратная сопротивлению где R – электрическое сопротивление постоянному току, (Ом); R20 – электрическое сопротивление постоянному току при температуре 20ºС, (Ом); α - температурный коэффициент сопротивления, зависящий от материала; T – температура окружающей среды, (ºС). где G - электрическая проводимость, (См) (Сименс) или Ом-1; U - напряжение, (В); I – сила тока, (А); R – электрическое сопротивление, (Ом).

28 слайд

Описание слайда:

Потокосцепление – сумма магнитных потоков, сцепленных с элементами контура электрической цепи. Потокосцепление самоиндукции – потокосцепление элемента электрической цепи, обусловленное электрическим током в этом элементе. Собственная индуктивность – скалярная величина, равная отношению потокосцепления самоиндукции элемента электрической цепи к электрическому току в нем. где Ψ – потокосцепление, (Вб); m - число витков; Ф – магнитный поток (Вб). где L - индуктивность, (Гн); Ψ – потокосцепление, (Вб); I – сила тока, (А).

29 слайд

Рассказать друзьям